

Supported by

LLD Physics Survey XP, Rev. 1

College W&M **Colorado Sch Mines** Columbia U CompX **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL **PPPL** PSI **Princeton U Purdue U** SNL Think Tank, Inc. **UC Davis UC** Irvine **UCLA** UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Washington **U Wisconsin**

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U **NIFS** Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA. Frascati CEA, Cadarache **IPP**, Jülich **IPP**, Garching ASCR, Czech Rep **U** Quebec

Intro.

- Goals
 - Establish operation with a *pumping LLD* over a wider range of conditions than in commissioning XPs.
 - Get more info about how to run NSTX with a pumping LLD.
 - Establish some key physics trends.
 - Important to do this early, since LLD may or may not work as well at the end of the run as the beginning.
 - Gather data for further XP planning...first glance at interesting physics.
 - Not a surrogate for devoted XPs within the TSGs.
- Assumptions
 - Sufficient profile, pedestal, SOL and fluctuation diagnostics are functioning to make a cross-cutting XP worthwhile.
 - Assume "standard" B_P -based RWM/DEFC + n=3 correction is available and used.
 - NSTX is reasonably well conditioned, with early H-mode and at least 400 msec MHD-free I_P flat-top in the 900 kA/0.45 T reference.
 - The commissioning XP has demonstrated a shape with good LLD pumping + suggested fuelling scheme.
 - Henry's XP has this an an explicit goal.
- Dilemma
 - We have 2 days of run-time.
 - TSGs requested many more shots than can be accommodated in 2 run days.
 - Look for common physics themes among the groups.

ASC Group Wish-List

(7 shots)

(7 shots)

(7 shots)

(7 shots)

- Start with "warm" LLD, shape chosen as indicated before, run in priority order.
 - Load I_P =700 kA, B_T=0.48, P_{inj}=4MW
 - Repeat, raising/lower power to pin approximate β-limit
 - Be sure to ramp down I_{P} .
 - Change to $B_T=0.4$ ($I_P=700$ kA), $P_{inj}=4$ MW.
 - Repeat, raising/lower power to pin approximate β -limit
 - Optimize power & gas waveforms for long(ish) pulse.
 - Change to I_P =1100 kA (B_T=0.4), P_{inj}=4MW.
 - Repeat, raising/lower power to pin approximate β -limit
 - May need to reduce I_P given the lower elongation and (potentially) triangularity.
 - Change to I_P =1100 kA (B_T=0.48), P_{ini}=4MW.
- Braking/RMP pulses could be added to select cases.
 - or NB pulses to probe modifications of ideal stability.
- Repeat each (some) scenario(s) with a cold LLD.
 - In each case, repeat with 4MW power, then an additional shot matching the approximate β -evolution of the warm-LLD case (more or less power)

Shot counts could be wildly off pending difficulty of LLD operations.

NSTX

Macrostability Wish List

• Targets / control use

- Reduced v^* H-mode target over a large range of plasma current (3 4 shots)
 - ASC shot list has plan for high κ, I_p scan, including low I target should suffice, need to specify (coordinate) what strikepoint configuration(s) to use – all high delta should be ok for Macro XPs
- Full range of NBI power in H-mode targets at low and high v^* (2 3 shots)
 - ASC shot list has cold/warm LLD and power scan more specific definition of the actual shots to take should be made as a group
 - Suggestion is to choose two configurations yielding large range of v^* , and have 3 NBI source scan for each (6 shots). One purpose of NBI source scan is to produce NTM (ramp n = 1 field?)
- Run with n = 3 braking (1 2 "long pulse" shots; low/high v^* comparison shots (2))
 - Can re-run XP933 shot 133743 for comparison, or add to any new H-mode target. Use long pulse to allow different n = 3 braking steps, reaching steady-state V₀. (part of ASC shot list)
 - Run in high/low v^* comparison shots; Run at least one shot down to very low rotation to reproduce superbanana plateau regime conditions (as done in CY 2009)
- Run RWM control, B_p sensors and CY2009 settings to compare (2+ shots)
 - Can be added to any shot, but best done for boundary configuration close to CY2009 fiducial, now with LLD cover both high and low v^* , and low l_i . (easily added to ASC shot list)
 - One of these shots should include a condition spun down to low rotation (see "braking" above)
- Run RWM control with B_p and B_r sensors (~ 2 shots)
 - Can be added to any shot, but suggest a limited number; use settings from 128487
- Reduced q₉₅ target as starting point for ELM stability, other studies (3+ shots)
 - Can use XP818 reduced q₉₅ ELMing target 127889 (or later equivalent). If allowed, run LSN and USN variants.
 - Looking for an ELMing case, may need to run off a cold LLD and/or use USN variant

T & T Wish List

- Scan at constant q most important for T&T
 - Keep B_t/I_p constant allows same pitch angle for direct comparison of fluctuations for GPI and BES
- Prefers maximal scan range in B_t at constant q
- 700kA/0.35T (or 800kA/0.4T)
- 900kA/0.45T (or 950kA/0.48T)
- 1100kA/0.55T (Power scan here)
- Power scan at 1 setting, highest I_p, B_t point at which scan is possible
- BES, GPI, reflectometer, high-k should be consulted to be available

Boundary Physics

- No specific requests, but a few reminders:
 - Need to maintain outer-gap for optimal pedestal resolution (10 cm)
 - Keep biased down, say dr-sep=-1 cm.
 - Important for diagnostics and LLD operations
 - Maintain optimal OSP location for pumping.

- Suggested references tend to be $B_T = 0.45 \& I_P = 900 kA$
 - $I_{P}/B_{T}=2000 \text{ kA/T}$
 - 129015 at intermediate- δ , 129061 at high- δ
- Main focus is on scanning the OSP radius (and hence δ_L) in order to develop shapes with good LLD pumping.
 - Will try some/all of $R_{OSP} \approx 0.55, 0.64$ (likely not 0.75, maybe not 0.35)
- Likely that $R_{OSP} \approx 0.55$ (or 0.65) is required for significant LLD pumping.
 - Standard highest- δ configuration is not thought to be a good candidate.
- For R_{OSP}=0.65 (bull-nose tile), the pulse length and/or input power may be highly constrained.
 - Limited by energy on LLD.
- Develop cases with HFS & SGI fuelling.
- Compare warm (liquid lithium) and cold (solid lithium) LLD cases.

Observations

- Commissioning XP should provide the starting point.
 - "Starting Point"=shape with reasonable pumping and a recommended fuelling scenario.
 - Likely to be an intermediate- δ configuration (κ ~2.2, δ_L ~0.5-0.6), which are typically not as forgiving as high- δ .
- ASC would like a long-pulse demonstration with and without LLD.
- Both MS and T&T would like a collisionality scan.
- T&T wants the scan at constant q.
- MS wants to perturb individual shots (braking pulses and RWM control studies) within a collisionality scan.
- Need to keep I_P high enough that NB ions are held in...remember the 10cm gap!
- Don't want to try for too-challenging configurations at the start.
- n=3 fields applied for braking can also be used for:
 - Studies of the pedestal response to RMP at various collisionality.
 - S.P. splitting and striations.
- Collisionality impact on core and pedestal physics is a common theme.

Overall Proposal: Focus on a Constant-q Collisionality Scan Repeat the Shot List Once with Warm LLD, Once With Cold LLD

- Develop a longish-pulse target at lower current and field.
 - Long pulse demonstration for ASC, low-field part of constant-q scan for T&T and mhd, long pulse for multiple braking steps for MS.
 - Apply various magnetic braking pulses.
- Develop a high-current, high-field target, with same q.
 - Will provide the collisionality scan for MS & T&T, high-current and field SOL width studies.
 - Repeat key braking pulses.
 - Power scan.

The order of the next 2 steps TBD:

- Develop the intermediate case in the constant-q scan.
 - Maybe repeat braking pulses as necessary.
- Develop a high-current, low-field target.
 - Low-q₉₅, low-l_i, high- β_T for ASC, MS.

VERY, VERY, VERY unlikely to finish all four major steps in 1 day.

Proposal, In Suggested Priority Order Day 1 with Warm LLD, Day 2 with Cold LLD

•	Configuration 1: 750 kA, 0.38 T (I _P /B _T =2000 kA/T)	
	 Develop target to longest reasonable pulse length. 	(7 shots)
	 Likely start with 4 MW, increase/decrease power to most it can gra 	acefully tolerate.
	 Apply n=3 fields. 	(7 shots)
	See next slide.	
	 Take a few lower-power points. 	(3 shots)
•	Configuration 2: 1.0MA, 0.5 T (I _P /B _T =2000 kA/T)	
	 Develop target to full TF waveform duration. 	(4 shots)
	 This shot should take all 6 MW, unless confinement is really good 	
	 Repeat n=3 fields. 	(7 shots)
	See next slide.	
	 Do power scan. 	(3 shots)
	2,4 MW cases	
•	Configuration 3: 900 kA, 0.45 T (I _P /B _T =2000 kA/T)	
	 Develop to reasonable length 	(3 shots)
	braking pulses? (7 shots)	
•	Configuration 4: 1 MA, 0.38 T (like 134837)	
	- Low- q_{95} , low(er)- I_i , high- β_T for ASC	
	 Develop target to reasonable length (no braking pulses?) 	(5 shots)

Braking Pulses Must be Carefully Planed

- ~7 shots allocated in each configuration to study 3-D field effects vs. collisionality.
 - High-field case has only a short flat-top, and will not permit many steps.
- Suggested allocation:
 - 3 shots for NTV studies.
 - 2 shots for RMP studies.
 - 2 shots for momentum pinch.
- Leave that to Sabbagh, Kaye, Maingi (Berkery, Solomon, Canik, Ahn whoever else).

Backup

 TSG leaders - for the LLD physics survey XP, please think through which physics questions/scans each TSG should address, determine the plasma target shots you need. and consult with Dennis (out sick this week) and Stefan to begin putting together a list of shots to be developed. We will then try to consolidate/reduce the number of shot types needed, expecting to build off of whatever comes from initial shot development and Henry/Vlad LLD commissioning/pumping XPs.

