

A synthetic diagnostic for validation of nonlinear ETG simulations against measurement with coherent electromagnetic scattering

FM Poli

University of Warwick, Coventry, CV4 7AL, UK

In collaboration with

S Ethier, W Wang, E Mazzucato

Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ, 08543

Work supported by U.S. DOE Contract DE-AC02-76-CH03073 and the SciDAC GPS-TTBP project. FM Poli is supported by EPSRC

Why are synthetic diagnostics needed?

- Measured and simulated plasma quantities may differ
- Measured and simulated quantities may be in different domains (as in the case of scattering experiments)
- Diagnostics 'filter' plasma quantities by a Transfer Function

A synthetic diagnostic *simulates* the experimental setup to provide a filter to the numerical output of simulations.

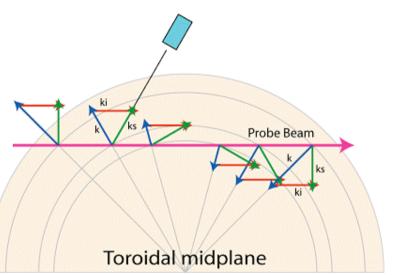
A synthetic diagnostic is itself a model

A synthetic diagnostic for coherent scattering should take into account:

 Measured and simulated density fluctuations in different domains

$$\tilde{n}_{SIM}(r,\theta,\phi,t)$$
 $\tilde{n}_{HK}(\vec{k},t)$

 Interpretation of measurements is based on a model



• Should be suitable for use in *predictive* mode to quantify uncertainties on measured spectra

Outline

- General issues with theory-exp comparison
- Structure of the high-k synthetic diagnostic
- Application to NSTX plasma discharge #124901
- Further implementation and applications

Theory-exp comparison is based on frequency and/or wavenumber spectra

 $P_{HK}(k_{\perp}^{j},\omega)$ Discrete in k_{\perp} , good statistics in ω

 $P_{SIM}(k_r, k_{\theta}, \omega)$ Wide range in (k_r, k_{θ}) , poor statistics in ω

Comparison based on $P(k_{\perp})$

X Limited range of experimental values

X Detector calibration needed for a quantitative comparison

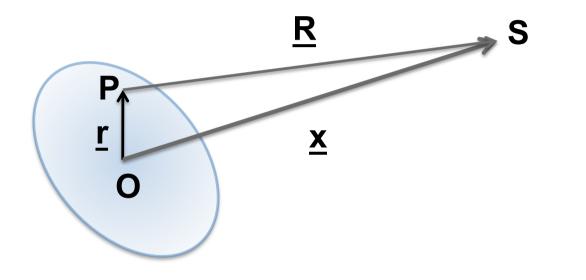
Comparison based on $P(\omega)$

× Short time series in simulations ($\Delta \omega$ small enough to resolve low- ω)

✓ Comparison still possible when data are not calibrated

Basic Requirements:

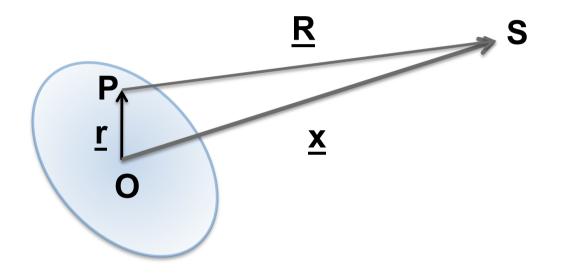
- 1. Computation of spectra from simulations (statistical accuracy, efficiency)
- 2. Selection of (k_r, k_{θ}) from simulated spectra to mimic real diagnostic



$$\vec{E}_{s} = \left[\frac{r_{e}}{R}\hat{s} \times \hat{s} \times \vec{E}_{i}\right]$$

$$\vec{E}_i(\mathbf{r},t) = \mathbf{E}_i(\mathbf{r}_\perp) e^{i(\vec{k}_i \cdot \vec{r} - \omega_i t)}$$

$$\vec{E}_{s}(\boldsymbol{v}_{s}) = \frac{r_{e}}{x} e^{i\vec{k}_{s}\cdot\vec{x}} (\hat{s}\hat{s}-1) \cdot \int_{T'} dt' \int_{V} d^{3}r' \mathbf{E}_{i}(\mathbf{r}_{\perp}) e^{i(\omega t'-\vec{k}\cdot\vec{r})} \tilde{n}(\vec{r}',t')$$

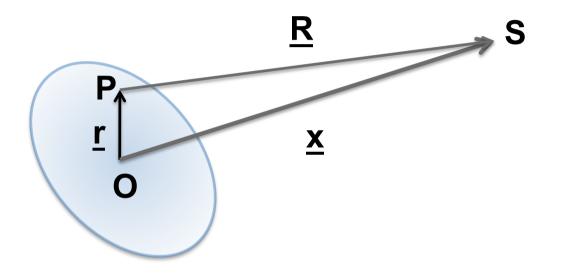


$$\vec{E}_{s} = \left[\frac{r_{e}}{R}\hat{s} \times \hat{s} \times \vec{E}_{i}\right]$$

$$\vec{E}_i(\mathbf{r},t) = \mathbf{E}_i(\mathbf{r}_\perp) e^{i(\vec{k}_i \cdot \vec{r} - \omega_i t)}$$

$$\vec{E}_{s}(\boldsymbol{v}_{s}) = \frac{r_{e}}{x} e^{i\vec{k}_{s}\cdot\vec{x}} (\hat{s}\hat{s}-1) \cdot \int_{T'} dt' \int_{V} d^{3}r' \mathbf{E}_{i}(\mathbf{r}_{\perp}) e^{i(\omega t'-\vec{k}\cdot\vec{r})} \tilde{n}(\vec{r}',t')$$

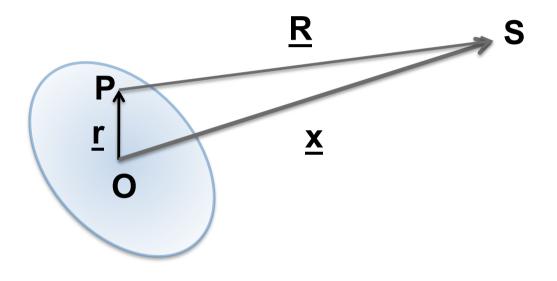
Direction & amplitude of k_s



$$\vec{E}_{s} = \left[\frac{r_{e}}{R}\hat{s} \times \hat{s} \times \vec{E}_{i}\right]$$

$$\vec{E}_i(\mathbf{r},t) = \mathbf{E}_i(\mathbf{r}_\perp) e^{i(\vec{k}_i \cdot \vec{r} - \omega_i t)}$$

$$\vec{E}_{s}(\boldsymbol{v}_{s}) = \frac{r_{e}}{x} e^{i\vec{k}_{s}\cdot\vec{x}} (\hat{s}\hat{s}-1) \cdot \int_{T'} dt' \int_{V} d^{3}r' \mathbf{E}_{i}(\mathbf{r}_{\perp}) e^{i(\omega t'-\vec{k}\cdot\vec{r})} \tilde{n}(\vec{r}',t')$$
Direction & amplitude of k_s
Amplitude profile of beam
(size of the scattering volume)



$$\vec{E}_{s} = \left[\frac{r_{e}}{R}\hat{s} \times \hat{s} \times \vec{E}_{i}\right]$$

$$\vec{E}_i(\mathbf{r},t) = \mathbf{E}_i(\mathbf{r}_\perp) e^{i(\vec{k}_i \cdot \vec{r} - \omega_i t)}$$

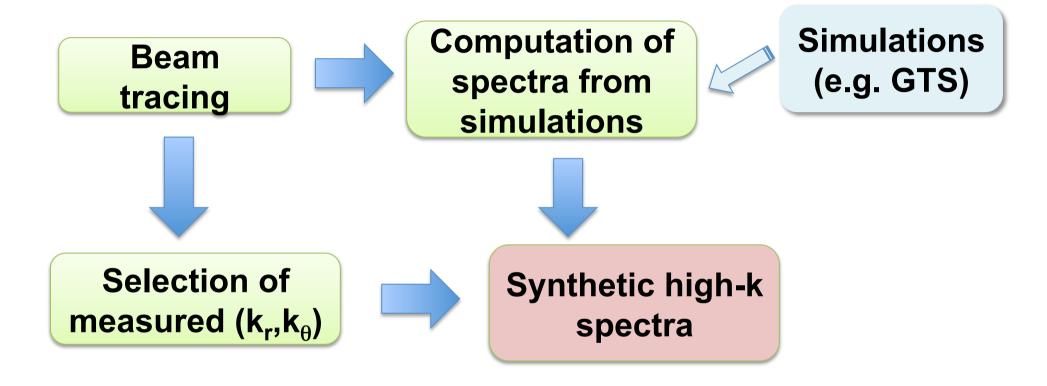
$$\vec{E}_{s}(\boldsymbol{v}_{s}) = \frac{r_{e}}{x} e^{i\vec{k}_{s}\cdot\vec{x}} (\hat{s}\hat{s}-1) \cdot \int_{T'} dt' \int_{V} d^{3}r' \mathbf{E}_{i}(\mathbf{r}_{\perp}) e^{i(\omega t'-\vec{k}\cdot\vec{r})}$$

Direction & amplitude of k_s

Fourier Transform of density fluctuations weighted by the beam intensity 8

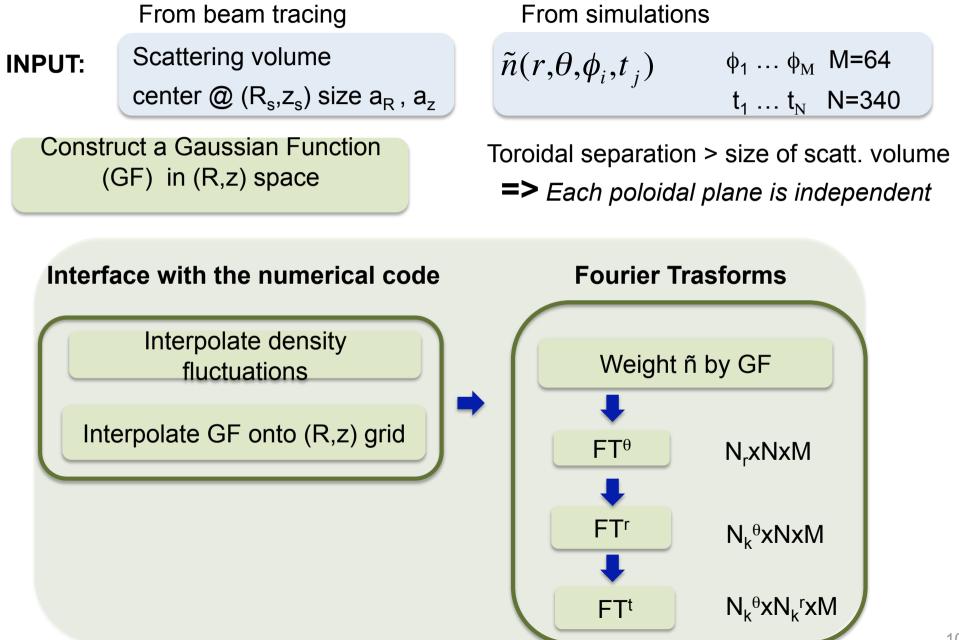
 $\tilde{n}(\vec{r}',t')$

There are three blocks in this synthetic diagnostic

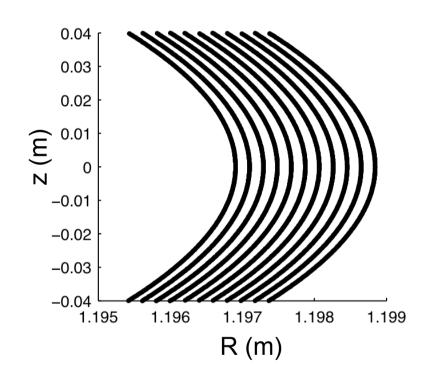


- standalone
- applicable to other simulations (ITG, fluid)
- applicable (with limitations) to lower frequency beams
- can be used in predictive mode

Block 1: computation of spectra



\mathbf{k}_{θ} spectra are computed in real space along the diamagnetic direction



Along each flux surface in real space (R,z)
 construct a diamagnetic trajectory:

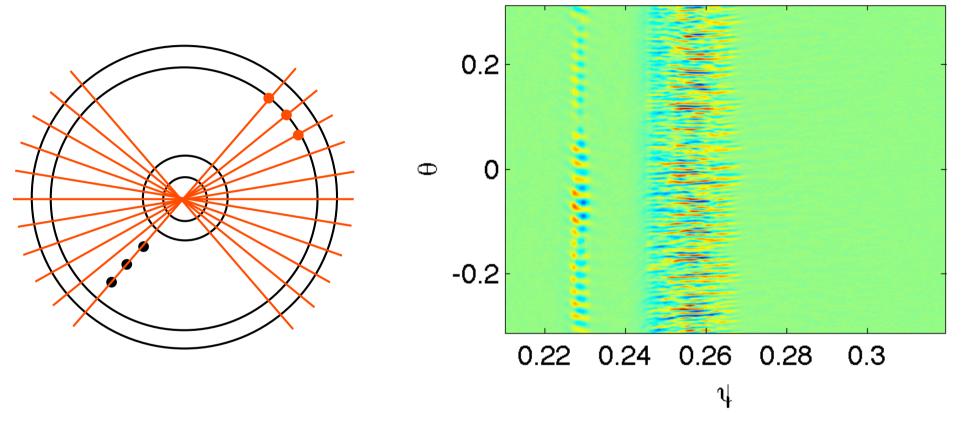
$$ds_{j} = \sqrt{(R_{j+1} - R_{j})^{2} + (z_{j+1} - z_{j})^{2}}$$

- Interpolate along this trajectory using the same *ds* for all flux surfaces (to have the same k_N and Δk_{θ})
- The Fourier components depend only on the value of R at midplane

$$\tilde{n}(R_{mid},k_{\theta},t_{i})$$

Computation of k_r spectra requires
 interpolation of Fourier components along R

Near term: density fluctuations interpolated directly in flux coordinates



Original grid: $\Delta \theta$ uniform along each flux surface (but it depends on surface)

1D interpolation along $\theta =>$ distribute data along rays •••

1D interpolation along $\psi =>$ values chosen to have uniform ΔR at midplane ••• This part will be included in the GTS code, as an operation on the stored output₁₂

Block 2: The beam tracing is a key element of the high-k synthetic diagnostic

Find location and extension of scattering volume

$$\mathbf{E}_i(\mathbf{r}_\perp) \rightarrow E_0 e^{-r_\perp^2/a^2}$$

 \vec{k}_s, \vec{k}_i

Inside the scattering volume

Windowing for Fourier Transform (FT)

$$\int_{V} d^{3}r \mathbf{E}_{i}(\mathbf{r}_{\perp}) \tilde{n}(\vec{r},t) e^{i(\omega t - \vec{k} \cdot \vec{r})}$$
$$\vec{k} = \vec{k}_{s} - \vec{k}_{i}$$
$$k = 2k_{i} \sin(\theta_{s}/2)$$

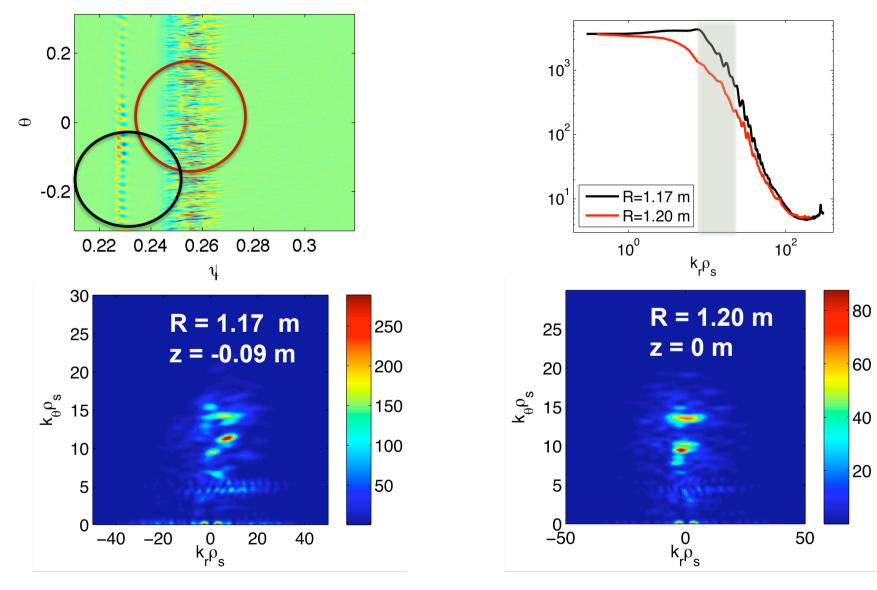
Find Instrument Selectivity Function

 (k_r, k_{θ}) selection

<u>Note:</u> beam tracing (vs. *ray* tracing) is required for an accurate reconstruction of

- Scattering volume
- Instrument Selectivity Function

Small changes in the position of scattering may significantly affect the spectra



NOTE: No selection of (k_r, k_{θ}) yet

The measured k's are weighted by an Instrument Selectivity Function (ISF)

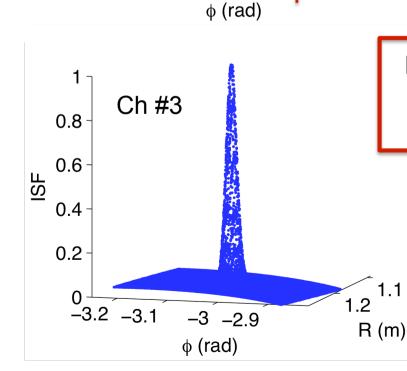
1.1

R (m)

1.2

[E. Mazzucato, Phys. Plasmas 10 753 (2003)]

- First, take a toroidal length $L = \frac{2a}{\sin(\theta_s)}$
- Then, compute the ISF for all k_i , θ_s , within this volume



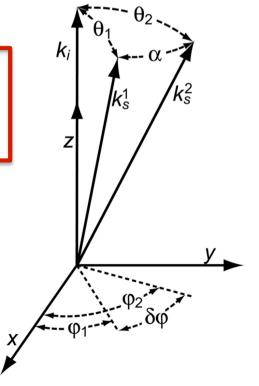
-3 _2.9

z (m)

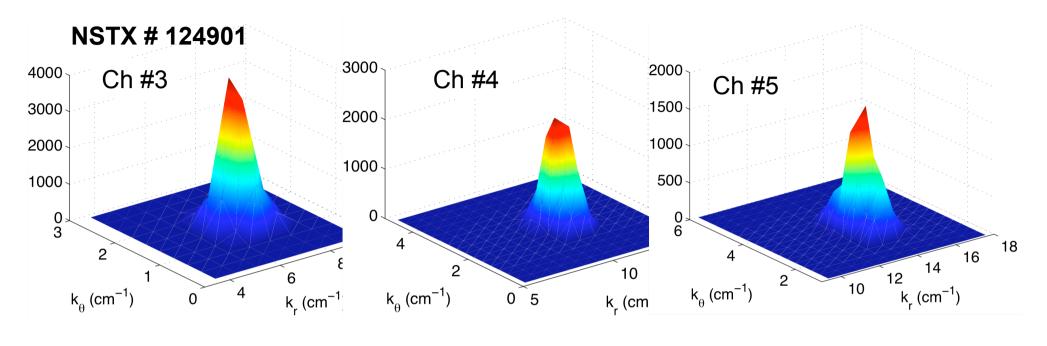
-0.05

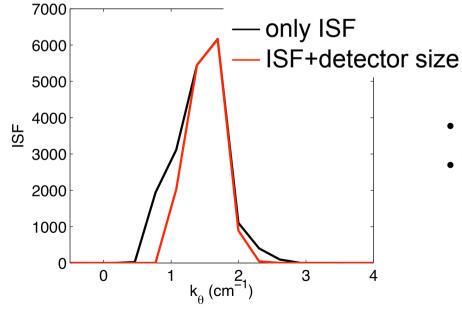
-3.2 -3.1

$$F = \exp(-\alpha^2 / \alpha_0^2)$$



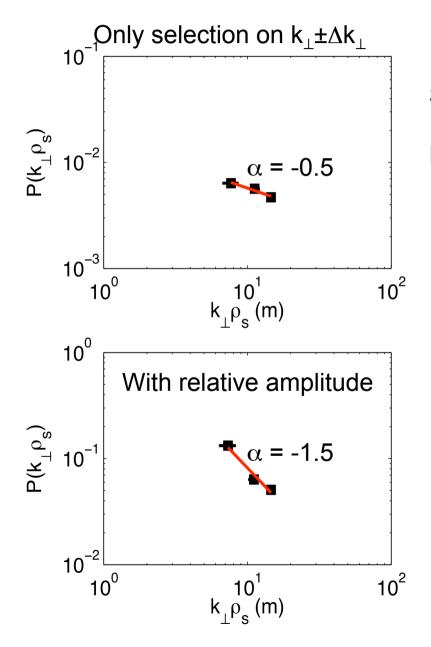
The ISF bounds the measured (k_r, k_θ) range





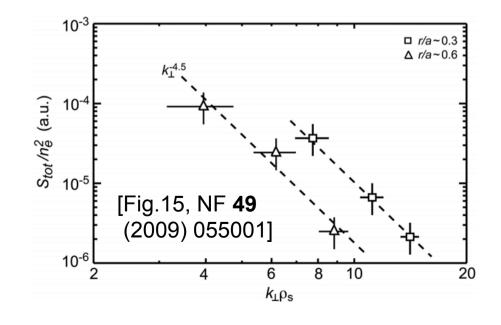
- Finite size of detector should also be included
- The relative amplitude decreases
 with increasing scattering angle

The relative amplitude must be taken into account when computing the spectral index

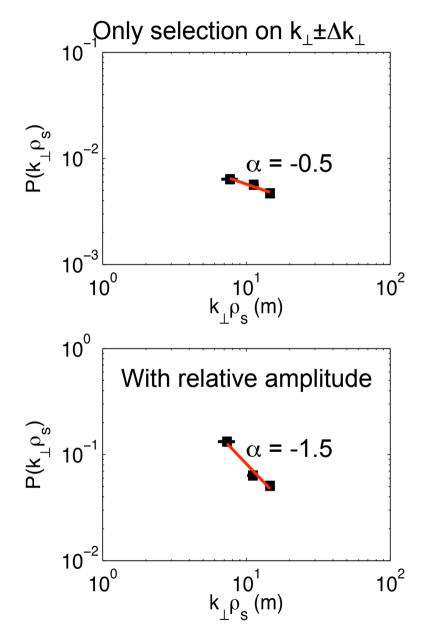


Spectral index still lower than $\alpha_{EXP} = -4.5$

Estimate difficult because of reduced range of k_{\perp}



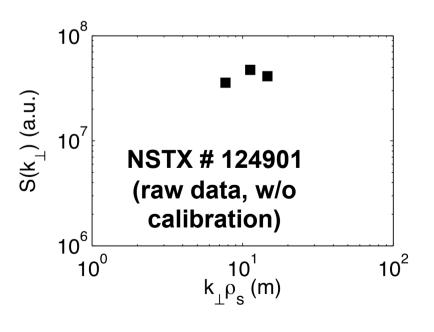
The relative amplitude must be taken into account when computing the spectral index



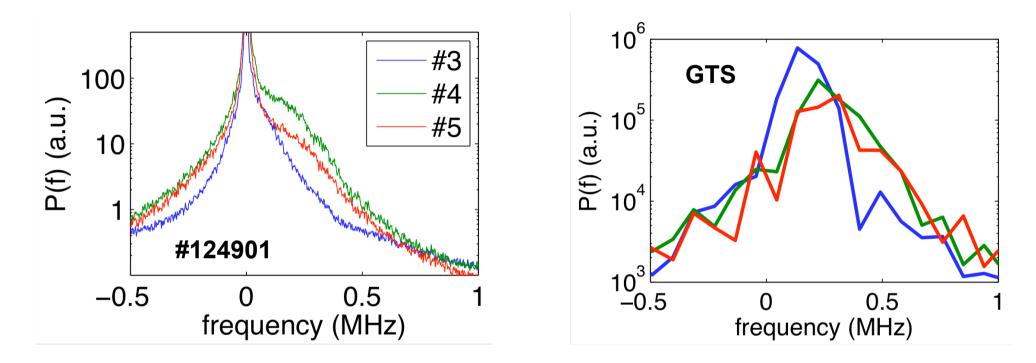
Spectral index still lower than α_{EXP} = –4.5

Estimate difficult because of reduced range of $k_{\!\scriptscriptstyle \perp}$

Comparison difficult because data are not calibrated for this shot



Similar features observed in measured and simulated spectra



- maximum spectral amplitude below 0.5 MHz
- broader spectra at larger wavenumbers (ch #4-5 compared to #3)

Analysis on multiple planes required for statistical significance of spectra

Sources of uncertainties

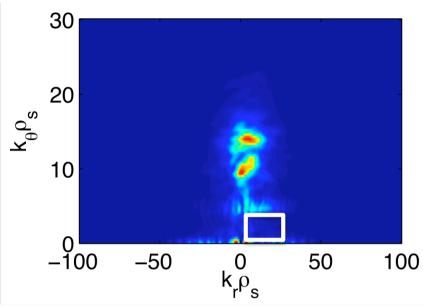
A synthetic diagnostic for coherent scattering relies on model

- Ray tracing results depend on
 - Density profile
 - Magnetic equilibrium reconstruction
- \Rightarrow Uncertainties from the input profiles

 \Rightarrow may affect the prediction of position of scattering

⇒ Sensitivity studies should be performed for the synthetic high-k

The synthetic diagnostic can be used in predictive mode



Starting from the present configuration:

- How does the measured spectrum look like when injection/detection angles are changed?
- How do changes in the simulated spectrum affect the measured spectrum in the range of lower k?

If we want to measure the spectrum in the wavenumber range where simulations do predict streamers:

- What is the most suitable geometrical configuration ?
- How many channels are needed?
- Which distance between channels?

Summary

A synthetic high-k diagnostic is being developed that:

- Consists of standalone blocks (applicable to exp and to various codes)
- Reproduces conditions close to the experiment

(Beam propagation and spread, selection of **k** using an ISF)

- Computation of spectra is optimized to
 - minimize errors due to interpolation
 - maximize efficiency
- Can be used in interpretive mode or in predictive mode

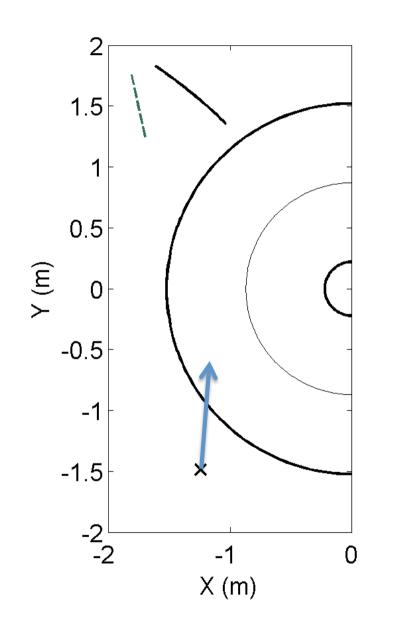
Implementation and future work

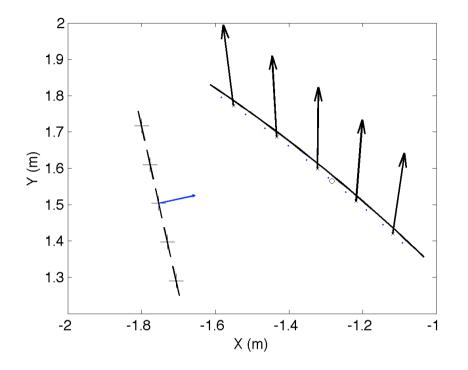
- Implement the Instrument Selectivity Function for general injection and detection geometry
 - better model for the detector transmission function
- Include fluctuations profile in the ray tracing to estimate uncertainties in the ISF (it may be computational heavy)
- Study the sensitivity of the synthetic diagnostic to plasma parameters for different experimental configurations

Backup slides

	k _r (cm⁻¹)	k _θ (cm ⁻¹)	$\theta_{s}(rad)$	
# 3	7.41	2.07	0.132	Central ray
	7.13	1.73	0.126	Detector axis
	7.0±0.7	1.5±0.4		ISF
# 4	10.84	2.92	0.193	Central ray
	10.82	2.53	0.191	Detector axis
	10.7±0.9	2.4±0.5		ISF
# 5	14.12	3.75	0.251	Central ray
	14.23	3.27	0.251	Detector axis
	14.1±0.8	3.2±0.5		ISF

Experimental layout





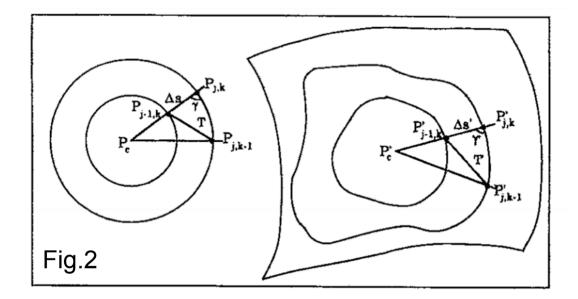
Input parameters for ray tracing

- Launching geometry
- Receiving geometry
- Size of receiving windows

A beam tracing code accounts for spreading

[Novak and Orefice, Phys. Plasmas 1 1242 (1994)]

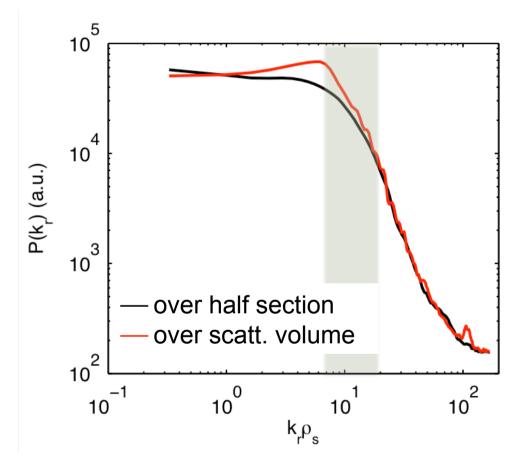
$$\vec{E}_{i}(\mathbf{r},t) = \mathbf{E}_{i}(\mathbf{r}_{\perp}) e^{i[k_{0}S(\mathbf{r})-\omega_{i}t]}$$
$$S = R + iI$$
$$\Re: (\nabla R)^{2} - (\nabla I)^{2} = N^{2}$$
$$\Im: \nabla R \cdot \nabla I = 0$$

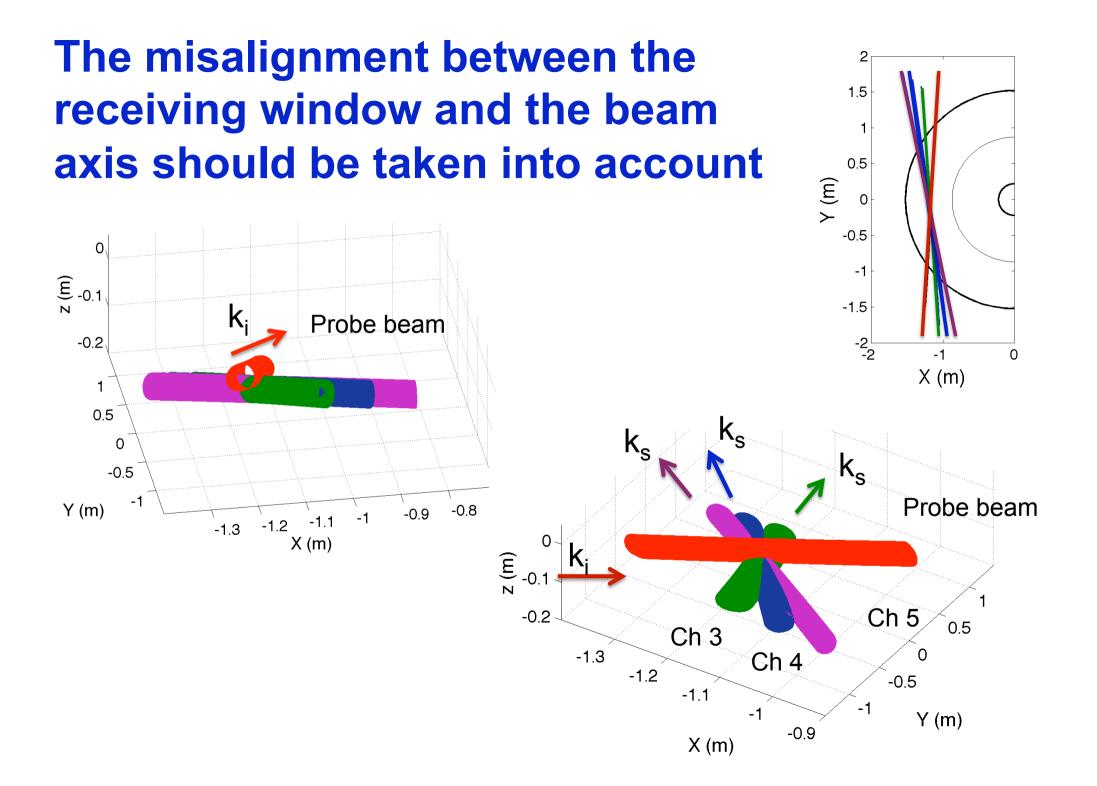


$$\frac{d(\nabla I)^2}{ds_i} = \frac{\left[\nabla I(P_i)\right]^2 - \left[\nabla I(P)\right]^2}{ds_i} = \frac{1}{ds_i} \left(dx_i \frac{\partial}{\partial x} + dy_i \frac{\partial}{\partial y} + dz_i \frac{\partial}{\partial z} \right) (\nabla I)^2$$
$$\left| \nabla I(P'_{j,k}) \right| = \left| \frac{1}{\sin \gamma(P_{j,k})} \frac{\partial I(P'_{j,k})}{\partial s'} \right| \qquad \frac{\partial I(P'_{j,k})}{\partial s'} = \frac{\Delta s}{\Delta s'} \frac{\partial I(P_{j,k})}{\partial s}$$

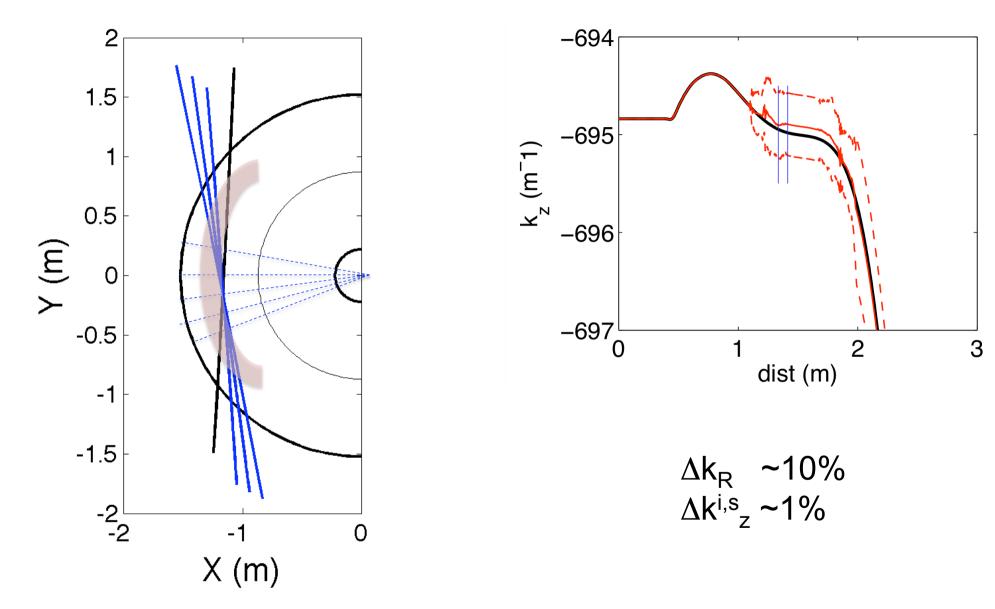
Taking into account the scattering volume DOES matter

- the spectral amplitude changes
- the slope changes
- ⇒ Different spectral indices are extracted in the two cases





Effect of anisotropic density fluctuations

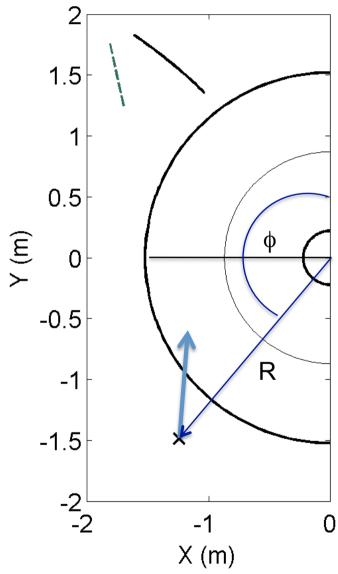


High-k system measures density fluctuations in a limited k-range

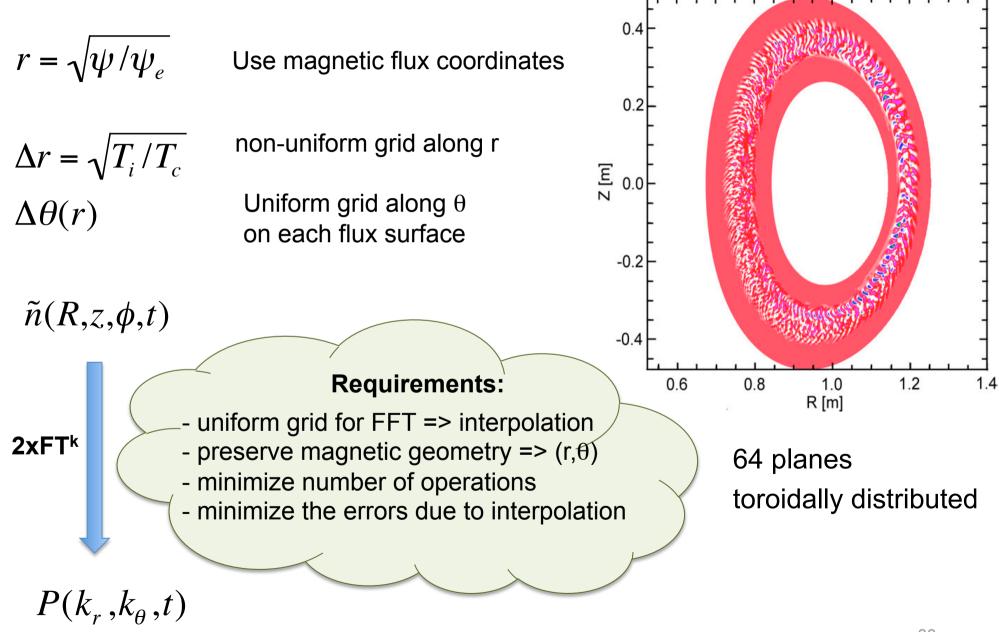
$$\begin{split} I(t) &= A(t) \cos[\alpha(t)] & \text{In-phase} \\ Q(t) &= A(t) \sin[\alpha(t)] & \text{Quadrature} \\ I(t) &+ iQ(t) = A(t)e^{i\alpha(t)} \propto \tilde{n}(\vec{k}, t) \\ \vec{k} &= (k_R, k_{\phi}, k_z) & \longrightarrow P(k_{\perp}^{j}, \omega) \end{split}$$

Use the equilibrium reconstruction to convert into:

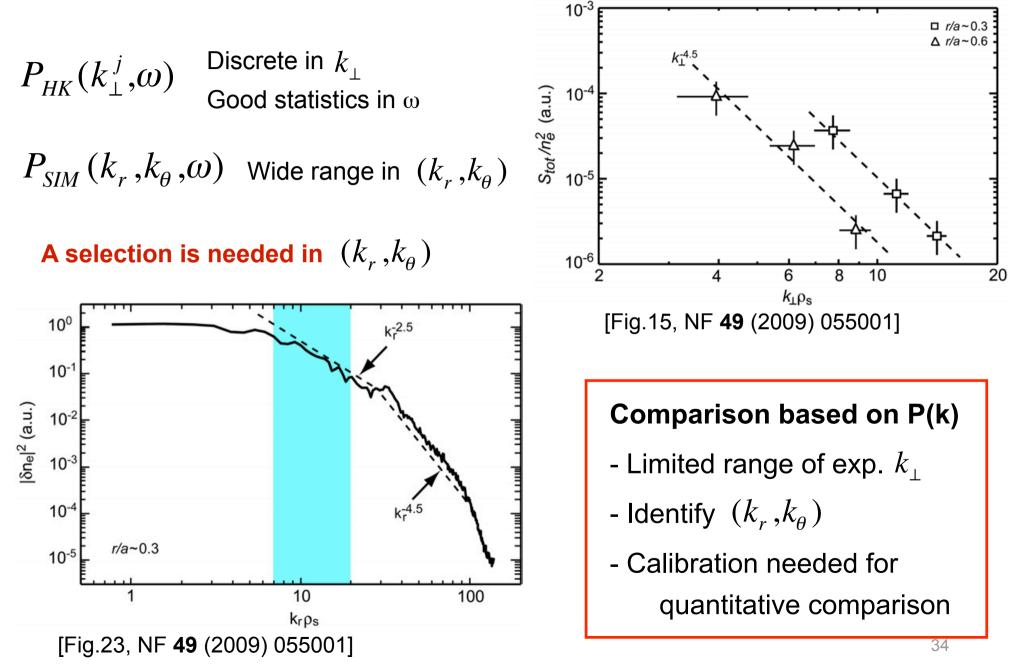
$$\vec{k}_{\perp}^{\,j} \equiv (k_r^{\,j}, k_{\theta}^{\,j})$$



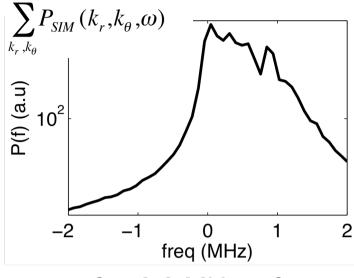
GTS simulates fluctuations in the real domain



Ways of comparing and related issues/1



Ways of comparing and related issues/2



 $\delta t \Rightarrow f_N \sim 2.3 \text{ MHz} < f_{N,HK}$

Comparison based on $P(\omega)$

- short time series in simulations ($\Delta \omega$ small enough to resolve low- ω)
- Doppler shift due to ExB
- Select (k_r, k_{θ})
- Comparison still possible when data are not calibrated

