

Supported by

The Enhanced Pedestal H-mode: Characteristics and Long Pulse Prospects

College W&M **Colorado Sch Mines** Columbia U Comp-X **General Atomics** INL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL PPPL PSI **Princeton U** Purdue U SNL Think Tank. Inc. UC Davis UC Irvine UCLA UCSD **U** Colorado **U Maryland U** Rochester **U** Washington **U Wisconsin**

R. Maingi, J.M. Canik

With thanks to S. Kaye, and M. Bell for analysis

Monday Physics Meeting PPPL, Princeton NJ 1 Mar 2009

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache **IPP, Jülich IPP, Garching** ASCR, Czech Rep **U** Quebec

Office of

Science

The Enhanced Pedestal H-mode (EPH) has favorable characteristics and improved long pulse prospects

- Characteristics of EP H-mode
 - Highest normalized energy confinement of any regime in NSTX, with H89P \leq 3.5 and H98y2 \leq 1.8
- Prospects for increasing pulse length
 - Can be triggered by large ELM or RMP-triggered ELM(!), with pulse length \leq 3 τ_{E} (up to 300 msec)
- A PRL manuscript is being prepared

Transition to an Enhanced Pedestal H-mode enables pedestal $v_{e,ped}$ * ~ 0.1 in NSTX

EPH-mode phases up to several hundred msec observed recently (more common with lithium?)

Common Enhanced Pedestal H-mode Characteristics

- A second transition to enhanced confinement and high pedestal T_e, T_i ≤ 700 eV
 - Second transition after large ELM, either natural or triggered by 3D fields
 - W_{MHD} ramps ~ linearly in time, typically dW/dt ~ 0.4*P_{NBI}
 - $H_{H97L} \ge 2.5$, and as high as 3.5 transiently
 - EP H-mode phase observed during I_p ramp or flat-top
- Common feature: edge v_{ϕ} develops large gradient, with a large drag, typically near the q=3 surface
- Low loop voltage, high β_{N} (due partly to low pressure peaking factor)

✓ high performance, long pulse candidate

Comparison of Standard and EP H-mode evolution

Comparison of Standard and EP H-mode profiles

Enhanced Pedestal H-mode barrier width size comparable to gyro-diameter

- Edge scale lengths for both T_i and n_c approach the gyro-diameter during EPHmode
- Ion gyroradius ρ_i ~ 0.7 cm relative to IBI, owing to combination of local T_i ~ 350 eV and and IBI ~ 0.35 T at outer midplane
 - Approaching or at the fundamental limit on the gradient scale length?
- Reduced v_φ seems to be in center of high ∇T_i region

Spontaneous EPH-mode also observed during I_p flat-top

- Same I_p , P_{NBI}
- $\bullet \text{Lower P}_{\text{NBI}}$
- Higher W_{MHD} during EPH
- Higher H97L
 during EPH
- ELM trigger for EPH

3D fields used for ELM pace making may trigger EPH during periods when 3D fields switched off

EPH may occur naturally in recovery period following ELM/braking triggers

During infrequent ELM triggering, EPH may be triggered during each quiescent period!?

() NSTX

CAK RIDGE

EPH-mode phase observed for several $\tau_{E_{i}}$ up to ~ 300 msec

High β_N phase maintained for 2 τ_F

High β_{pol} results in high bootstrap and non-inductive fraction (f_{NI} ~ 0.65 from TRANSP)

High bootstrap and non-inductive fractions, high thermal τ_{F} during EPH phase

EPH-mode would make a decent ASC TSG high performance, long pulse target

- Initiating EPH-mode:
 - Lithium conditioning for ELM-free conditions
 - Either fast RMP trigger of a large ELM(5 Hz?), or longer RMP pulse with several ELMs: both seem to work
 - Since density profile control may be important, SGI may provide easier access (longest pulse EPH had SGI)
- Sustaining EPH-mode:
 - Use β feedback + n=1 feedback to avoid β limit
 - Pre-program NBI reduction, if needed
 - Raise B_t or drop I_p or more shaping to delay q₀=1 crossing

The Enhanced Pedestal H-mode has favorable characteristics and improved long pulse prospects

- EP H-modes occur naturally following large ELMs, or can be triggered with 3D fields
- Recently, EPH phases were obtained during I_p flat -top for several τ_E
- With the advent of β feedback on NBI and good n=1 feedback, extending the pulse length and using EPH as a high-performance target is enticing

EP H-mode profiles evolve continuously

EP H-mode profiles evolve continuously, although recovery from trigger takes a little time

 Discharge had Li evaporation to improve performance in regular Hmode

Changes in v_{ϕ} accompany high $T_{e,i}^{ped}$ in Enhanced **Pedestal H-mode**

- First order radial force balance: • $E_r + v_\theta B_\phi = v_\phi B_\theta + \nabla P_c / 6e N_c$
- EPH mode has $v_{\phi} \sim 0$ near • separatrix, probably due to drag from an island, such that ∇P term dominates v_{ϕ} over large region
- Large ∇v_{ϕ} indicative of large E_{r} ' •
- v_{θ} negligible (recent measurement) •

250

200

د 150 [km/sec] 100 د

50

0

0

#117820

0.4

0.6

ΨN

0.2

Long pulse EPH – density still evolving slowly, Z_{eff} rising, but P_{rad} seems reasonable

EPH-mode can have transient H89P up to 4

