

Supported by

The Enhanced Pedestal H-mode: Characteristics and Long Pulse Prospects

College W&M Colorado Sch Mines Columbia U Comp-X General Atomics INL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics New York U Old Dominion U ORNL PPPL PSI Princeton U Purdue U SNL Think Tank, Inc. UC Davis UC Irvine UCLA UCSD U Colorado U Maryland U Rochester U Washington U Wisconsin

R. Maingi, J.M. Canik S. Gerhardt

With thanks to S. Kaye, and M. Bell for analysis

Monday Physics Meeting PPPL, Princeton NJ 1 Mar 2009

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U U Tokyo JAEA Hebrew U Ioffe Inst RRC Kurchatov Inst TRINITI KBSI KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache IPP, Jülich IPP, Garching ASCR, Czech Rep U Quebec

Office of

Science

The Enhanced Pedestal H-mode (EPH) has favorable characteristics and improved long pulse prospects

- Characteristics of EP H-mode
	- Highest normalized energy confinement of any regime in NSTX, with H89P < 3.5 and H98y2 < 1.8
- Prospects for increasing pulse length
	- Can be triggered by large ELM or RMP-triggered ELM(!), with pulse length $<$ 3 τ_{F} (up to 300 msec)
- *A PRL manuscript is being prepared*

Transition to an Enhanced Pedestal H-mode enables pedestal ν**e,ped * ~ 0.1 in NSTX**

EPH-mode phases up to several hundred msec observed recently (more common with lithium?)

Common Enhanced Pedestal H-mode Characteristics

- A second transition to enhanced confinement and high pedestal T_e, T_i \leq 700 eV
	- Second transition after large ELM, either natural or triggered by 3D fields
	- W_{MHD} ramps ~ linearly in time, typically dW/dt ~ 0.4*P_{NBI}
	- $-$ H_{H97L} \geq 2.5, and as high as 3.5 transiently
	- EP H-mode phase observed during I_p ramp or flat-top
- Common feature: edge v_{ϕ} develops large gradient, with a large drag, typically near the q=3 surface
- Low loop voltage, high β_{N} (due partly to low pressure peaking factor)

high performance, long pulse candidate

Comparison of Standard and EP H-mode evolution

Comparison of Standard and EP H-mode profiles

Enhanced Pedestal H-mode barrier width size comparable to gyro-diameter

- Edge scale lengths for both T_i and n_C approach the gyro-diameter during EPHmode
- Ion gyroradius $\rho_i \sim 0.7$ cm relative to IBI, owing to combination of local T $_i$ ~ 350 eV and and $|B| \sim 0.35$ T at outer midplane
	- \triangleright Approaching or at the fundamental limit on the gradient scale length?
- Reduced v_{ϕ} seems to be in center of high $\nabla\mathsf{T}_\mathsf{i}$ region

Spontaneous EPH-mode also observed during Ip flat-top

- \cdot Same I_{D} , P_{NBI}
- \cdot Lower P_{NBL}
- Higher W_{MHD} during EPH
- Higher H97L during EPH
- ELM trigger for EPH

3D fields used for ELM pace making may trigger EPH during periods when 3D fields switched off

EPH may occur naturally in recovery period following ELM/braking triggers

RIDGE **NSTX**

During infrequent ELM triggering, EPH may be triggered during each *quiescent* **period!?**

RIDGE

EPH Mode: Maingi and Canik 1 March 2010 12

EPH-mode phase observed for several τ **_E up to ~ 300 msec**

EXPAK NSTX

EPH Mode: Maingi and Canik 13 1 March 2010 13 **1 March 2010** 13

High $β_N$ **phase maintained for 2** τ_F

High β**pol results in high bootstrap and non-inductive** $frac{1}{N}$ (f_{N1} ~ 0.65 from TRANSP)

EPH Mode: Maingi and Canik 1 March 2010 15 **15**

High bootstrap and non-inductive fractions, high thermal τ **_F during EPH phase**

EPH-mode would make a decent ASC TSG high performance, long pulse target

- Initiating EPH-mode:
	- Lithium conditioning for ELM-free conditions
	- Either fast RMP trigger of a large ELM(5 Hz?), or longer RMP pulse with several ELMs: both seem to work
	- Since density profile control may be important, *SGI may provide easier access (longest pulse EPH had SGI*)
- Sustaining EPH-mode:
	- Use β feedback + n=1 feedback to avoid β limit
	- Pre-program NBI reduction, if needed
	- Raise B_t or drop I_p or more shaping to delay $q_0=1$ crossing

The Enhanced Pedestal H-mode has favorable characteristics and improved long pulse prospects

- EP H-modes occur naturally following large ELMs, or can be triggered with 3D fields
- Recently, EPH phases were obtained during I_p flat -top for several τ_{E}
- With the advent of β feedback on NBI and good n=1 feedback, extending the pulse length and using EPH as a high-performance target is enticing

EP H-mode profiles evolve continuously

EP H-mode profiles evolve continuously, although recovery from trigger takes a little time

• Discharge had Li evaporation to improve performance in regular Hmode

NSTX

EPH Mode: Maingi and Canik 1 March 2010 Page 21

Changes in v_φ accompany high T_{e,i}ped in Enhanced Pedestal H-mode

- First order radial force balance: E_r +v $_\theta\mathsf{B}_\phi$ =v $_\phi\mathsf{B}_\theta$ +V P_c /6e N_c
- EPH mode has $v_{\phi} \sim 0$ near separatrix, probably due to drag from an island, such that ∇P term dominates v_{ϕ} over large region
- Large ∇v_{ϕ} indicative of large E_{r} '
- v_{θ} negligible (recent measurement)

 Ψ _N

0

#117820

50

100

V

tor [km/sec]

150

200

250

Long pulse EPH – density still evolving slowly, Z_{eff} rising, but P_{rad} seems reasonable

EPH Mode: Maingi and Canik 1 March 2010 23

EPH-mode can have transient H89P up to 4

