Edge magnetic field line studies for a proposed set of internal RMP coils on NSTX

T. E. Evans* General Atomics, San Diego, CA

NSTX Group Meeting March 8, 2010 PPPL, Princeton, NJ

*In collaboration with: J. Jayakuma, R. C. Kalling General Atomics, San Diego, CA

and

D. Orlov

University of California San Diego San Diego, CA

12 lower front surface primary passive plate (Ifsppp) coils

10_pppl_mpm_tee-1/14

Goals and parameters

- Quantify field line properties for a proposed set of internal RMP coils on NSTX configured for:
 - n = 6 (and some n=3) operations using:
 - Several plasma shapes with different values of q_{95} , dRsep, and κ
- Coil properties:
 - 2 rows of 12 coils
 - Mounted in front of the upper and lower primary passive plates
 - Referred to here as the Front Surface Primary Passive Plate (FSPPP) coils
 - Maximum single-turn current, 1 kA (square wave)
- Quantitative measures:
 - Stochastic layer width:
 - maximum width over which the Chirikov parameter exceeds unity
 - Field line loss fraction

A variety of NSTX plasma shapes were studied

• Comparisons were done using both n=3 and n=6 FSPPP coil perturbations for plasmas with different q_{95} , dRsep, and κ

Edge stochastic layer widths exceed 30% with n=3 even and odd parity FSPPP fields in high δ , κ plasmas

High $\delta_L \sim 0.7$, high κ , X-point controlled by pf1a

10_pppl_mpm_tee-4/14

In ITER-like plasmas n=6 FSPPP fields produce a relatively narrow edge stochastic layer width

Low $\delta_L \sim 0.5$, X-point controlled by pf2L, more ITER-like

10_pppl_mpm_tee-5/14

In high δ , κ plasmas n=6 FSPPP fields produce edge stochastic layers similar to those with n=3 fields

High $\delta_L \sim 0.7$, high κ , X-point controlled by pf1a

10_pppl_mpm_tee-6/14

A $\Delta \phi = 15^{\circ}$ upper coil shift with respect to the lower coil increases the edge stochastic layer width

NATIONAL FUSION FACILITY

10_pppl_mpm_tee-7/14

Increasing q₉₅ from 5.7 to 8.3 with n=6 even parity FSPPP fields reduces the edge stochastic layer width

10_pppl_mpm_tee-8/14

The alignment of odd and even parity resonant peaks in the n=6 spectrum facilitates dynamic q_{95} control

10_pppl_mpm_tee-9/14

Edge stochastic layer width can be maintained over a wide range of q_{95} by varying the n=6 toroidal phase

125200:501, lp =1.2 MA, BT = 4.5 kG, $q_{\rm Q5}$ = 7.16, κ = 2.4, drsep = -0.7

- Edge stochastic layer width \geq 27% maintained when using:
 - Even parity ($\Delta \phi = 0^{\circ}$) for 5.3 $\leq q_{95} \leq$ 7.0 and 10.3 $\leq q_{95} \leq$ 12.8 and
 - Odd parity ($\Delta \phi = 30^{\circ}$) for $7.0 \le q_{95} \le 10.3$

Edge stochastic layer width versus q_{95} is kept $\geq 30\%$ when n=6 FSPPP coil is combined with n=3 EF/RWM coil

10_pppl_mpm_tee-11/14

The n=6 FSPPP coil field line loss fraction is relatively small compared to the edge stochastic layer width

10_pppl_mpm_tee-12/14

The field line loss fraction exceeds that in DIII-D when the n=6 FSPPP coil is combined with n=3 EF/RWM coil

10_pppl_mpm_tee-13/14

Summary and additional comments

- In high δ , κ DN plasmas, n=6 FSPPP fields produce a wider edge stochastic layer than n=3 I-coil fields in DIII-D
 - Over a wider range in q_{95} (i.e., $5.3 \le q_{95} \le 12.8$)
- Combined FSPPP n=6 and EF/RWM n=3 field line loss fractions exceed those due combined n=3 l-coil and n=1 C-coil fields in DIII-D
 - Preliminary results from DIII-D indicate that as the pedestal collisionality increases ELM suppression is correlated with larger field line loss fractions
- Future FSPPP coil geometry optimizations include:
 - Aspect ratio variations
 - Studies of other RMP coil designs (e.g., DIII-D and ITER) indicate that optimizing the coil aperture to match the poloidal wavelength increases the coil efficiency
 - Angular tilt variations
 - Match the flux surface contours better (especially in lower κ plasmas)
 - Comparisons of optimized n=3 FSPPP coils with n=3 EF/RWM coils
 - Plasma response versus β_N and collisionality

