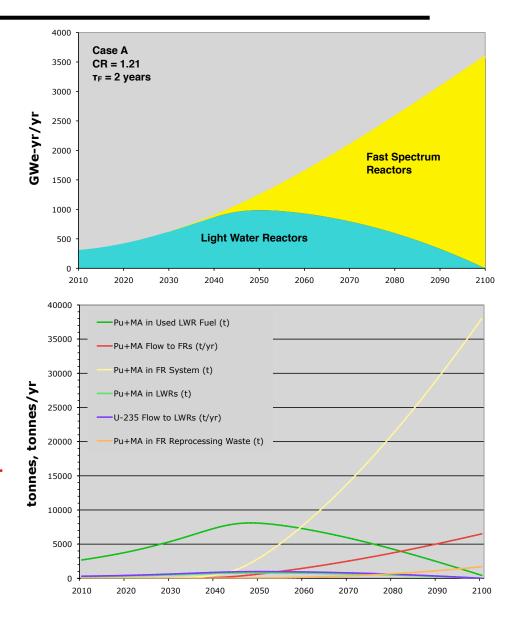

A Pilot Plant: The Fastest Path to Commercial Fusion Power

Rob Goldston NSTX Physics Meeting, March 15, 2010

FNSF+ Could be the Pilot Plant for Commercial Fusion

Shippingport, 60 MWe, 1957

Oyster Creek, 620 MWe, 1969


- The smallest facility to *pilot* the route to commercial fusion

 by doing fusion nuclear science, demonstrating practical
 operation, and making net electricity, based on
 - ITER + magnetic fusion R&D,
 - or NIF + inertial fusion R&D.
- The next step would be a commercial power plant.
- Results from NIF + ITER well underway could trigger a common preparatory R&D program – if (and only if) we have a compelling roadmap to commercial fusion power.

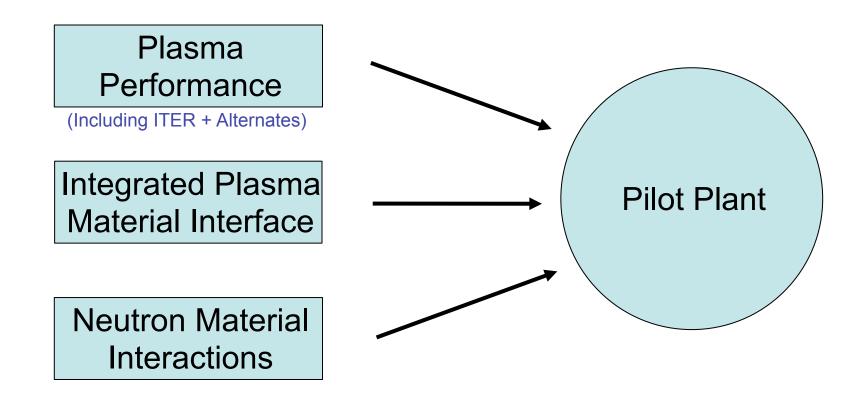
Fast Reactors Burning Pu + MA are Targeting 2040 - 2050 Commercialization

A Fast Reactor Scenario

- Nuclear = 30% of world electric power in 2100
- Burn 80% of all IAEA discovered + undiscovered uranium
- Load all Pu + MA from LWRs
- Peak of 8x Yucca Mt. storage of Pu + MA, worldwide
- 38,000t of Pu + MA in use in 2100
- Fuels reactors with 6500t/yr Pu + MA ~1 million bombs/yr in 2100
- IAEA MUFs 1% ~ 10,000 bombs/yr
- Fusion would have much lower proliferation risks

A Pilot Plant 2/3 of the Size of a Power Plant would Make Net Electricity

- Reduce linear dimensions to 2/3 power plant
- For fixed β , B, and T, P_{fus} down to $(2/3)^3 = 30\%$
- Current drive power is down by 4/9 for fixed T (tokamak)
- But Greenwald limit is up by 3/2: can run at higher n, lower T
 Allows lower T, higher P_{fus}, but current drive power is higher
- For conservatism, assume P_{recirc} is unchanged from power plant
- For $P_{fus} = 30\%$, $Q_{eng} > 1$ if Q_{eng} of the power plant > 3.33
- Pilot plant can do CTF/FDF mission: neutron flux > 2/3 power plant.
 Surface area is 4/9. Can adjust ⁶Li enrichment.


Obviously there are other factors (*e.g.,* neutron m.f.p.). On the other hand P_{recirc} = constant is conservative. Initial looks at Tokamak, ST, Stellarator support 2/3 reduction

Spreadsheet Pilot Plants are Encouraging

- Tokamak
 - R/a = 4.0m/1.0m, $B_0 = 6T$, $I_p = 8MA$
 - $H_H = 1.5$, $P_{fus} = 520$ MW, $Q_p = 10$, $Q_{eng} \sim 1$
- **ST**
 - R/a = 2m/1.2m, B₀ = 2.4T, I_p = 17 MA
 - $H_H = 1.4$, $P_{fus} = 700$ MW, $Q_p = 25$, $Q_{eng} \sim 1$
- Stellarator
 - R/<a> = 4.5m/1.0m, B₀ = 5.7T
 - H_{ISS04} = 2, P_{fus} = 470MW, Q_p = 40, Q_{eng} ~ 4

These spreadsheet analyses are only very first looks. Engineering scaled simply from ARIES studies.

Three Key Science Needs for a Technically Sound MFE Pilot Plant Design

Themes from FESAC Priorities, Gaps and Opportunities Report

Science Needs for a Technically Sound MFE Pilot Plant Design (1)

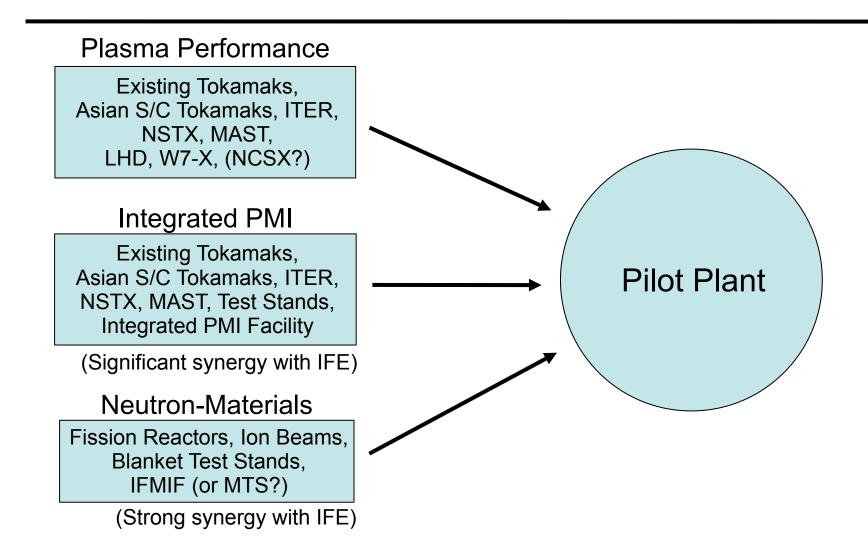
Plasma Performance

- Scaling of confinement, operating limits and sustainment in non-inductive tokamak plasmas
- Confinement scaling to relevant ρ^{*} and $\upsilon_{*}\text{, low rotation}$
- Alpha heating physics
- Scaling information at low A
 - Low A: cheapest, attractive maintenance approach
- Scaling information for stellarators
 - Stellarators: most credible for disruption avoidance, sustainment with low recirculating power
- Are there faster/better/cheaper alternatives?
 - ICCs

Science Needs for a Technically Sound MFE Pilot Plant Design (2)

Integrated Plasma-Materials Interface

- High heat and particle flux and fluence
 - What divertor designs work at needed power & duty factor?
 - What materials work at needed power & duty factor?
- Tritium retention
 - How to remove tritium in continuous operation?
 - All plasma-facing components (PFCs) must operate very hot.
- Dust production
 - How to remove dust in continuous operation?
- Practical experience with high-pressure He-cooled PFCs
- Practical experience with liquid metal PFCs
- Effects of ELMs and high-energy disruptions
 - Major issue for blanket / first wall survival in tokamaks & STs.


Significant synergy with many IFE concepts.

Science Needs for a Technically Sound MFE Pilot Plant Design (3)

- Design of Pilot Plant would be informed by a powerful point neutron source such as IFMIF (or MTS?).
 - Vacuum vessel design depends on properties of hot main blankets: electrical conduction paths, structural integrity, size, services (coolant, T purge fluid).
 - Hot main blanket design depends on material properties w/14 MeV neutrons.
 - Same logic holds for many other components, *e.g.*, divertors, antennas.
 - Point neutron source needed to develop materials for test blankets.
 - This was the ReNeW conclusion even about a CTF need IFMIF first
- Tritium breeding uncertainties can be mitigated by Li isotopic mix.
 - Tritium cycle can be confirmed in Pilot Plant.

A point neutron source has high synergy with many IFE concepts.

Facilities to Contribute to a Technically Sound MFE Pilot Plant Design

Roles of Existing & New Facilities

Plasma Performance

- Existing tokamaks, Asian S/C tokamaks for AT pilot plant option
- NSTX, MAST for low aspect ratio pilot plant option
- LHD, W7-X (NCSX?) for stellarator pilot plant option
- ITER for ρ^* scaling, α –particle heating
- ICC program for the wild-card option

Integrated Plasma-Material Interface

- Existing tokamaks, Asian S/C tokamaks, NSTX-U, MAST, test stands, for initial tests of new PFC materials and geometries
- Long-pulse, hot walls, high-heat-flux DD confinement facility for integrated power and particle handling solutions
- ITER for effects of high-energy ELMs and disruptions

Neutron Material Interactions

- Fission reactors, ion beams to sieve candidate materials.
- Blanket test stands to develop required technologies.
- IFMIF (or MTS?) with correct He/dpa to investigate materials physics at high fluence

A Pilot Plant is an Exciting Goal

• We can explain it to our sponsors and the public

- We have a plan to make put electricity on the grid
- The step after this would be commercial power plants
- R&D can be triggered by NIF success, ITER well underway

• It would culminate the key FESAC Themes

- Creating Predictable High-Performance Steady-State Plasmas
- Taming the Plasma-Material Interface
- Harnessing Fusion Power

• Fusion Community Pilot Plant Study?

- What would a tokamak, ST or stellarator Pilot Plant look like?
 - Lifetime fluence, maintenance approach, cost
 - It should be designed to drive fusion R&D in the right directions
- What supporting program is needed for a technically sound design?
- Is there a game-changer from the ICC program?
- A similar IFE Pilot Plant study should be carried out in parallel.