

Summaries of XPs 1027 and 1064

College W&M

Colorado Sch Mines

Columbia U

CompX

General Atomics

INEL

Johns Hopkins U

LANL

LLNL

Lodestar

MIT

Nova Photonics

New York U

Old Dominion U

ORNL

PPPL PSI

Princeton U

Purdue U

SNL

Think Tank, Inc.

UC Davis

UC Irvine

UCLA

UCSD

U Colorado

U Illinois

U Maryland

U Rochester

U Washington

U Wisconsin

J.M. Canik, ORNL

NSTX Monday Physics Meeting June 7, 2010

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kvushu Tokai U **NIFS** Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST **POSTECH ASIPP** ENEA, Frascati CEA, Cadarache IPP, Jülich IPP, Garching ASCR, Czech Rep **U** Quebec

XP1027: RMPs below ELM-triggering threshold for impurity screening

- Goal of XP: test if particle transport can be increased via RMPs, without triggering ELMs
 - Used n=3 pulses too short/small for ELM-triggering
 - Impurity expulsion-ELMs=good
- Successfully produced "blurps" on D_α, without large ELMs
 - Trains of ELMlets produced for two values of SPA current and pulse width
 - No dramatic impact on P_{rad} or carbon inventory evolution

A lot of data was gathered on response to n=3 pulses

- ELMlets visible on several fast cameras
- Neutron rate modulated by pulses
 - Also modulation in GAE amplitude->changes to fast ion distribution?
- Modulation also seen on USXR array (hup with 5 µm filter)
 - During n=3 pulse, edge channel increases (hup01),
 - More core channel (hup03) often decreases

XP1064: Development of EPH long-pulse mode

- Goal: test if EPH can be reliably triggered
 - Main tool is n=3 pulses
 - Several other knobs thought to possibly be conducive to EPH
 - Secondary goal to extend EPH phase using e.g. beta feedback
- Periods of improved confinement following n=3 pulses observed during flattop, but not EPH proper
 - Raising I_p, lithium brought out some traits of EPH during this phase
 - Increased edge V_t shear
 - Higher T_e,T_i pedestals
 - But not the dramatic change seen previously in EPH (134991)
 - High confinement phases also seen during control shot next morning, following large MHD events

EPH produced early in discharge using SGI

- CS puff reduced (1200 to 1000), replaced with SGI (138173)
- Transitions to EPH around t~0.23s
 - Fast ramp in neutron rate, β_N
 - Lasts to t~.33, then disruption

Spent ~10 shots trying to extend SGI-enabled early EPH

- EPH seen in ~4-5 shots
- Pre-programmed reduction in P_{NBI} achieved during one of these
 - Still disrupted early, at lower β_N
- Efforts to extend EPH phase largely unsuccessful
 - Tried increasing Li, tweaking I_p
 (1.0->0.95 MA) and B_t (.45->.48 T)
 - Last shot (.95MA/.48T) ran through, but no EPH

