

S.A. Sabbagh¹, T.E. Evans², L.E. Zakharov³, J-W. Ahn⁴, J. Canik⁴, R. Maingi⁴, J.W. Berkery¹, J.M. Bialek¹, S. Gerhardt³, J-K. Park³, Y-S. Park¹, H. Takahashi³, K. Tritz⁵, et al.

¹Department of Applied Physics, Columbia University ²General Atomics ³Princeton Plasma Physics Laboratory ⁴Oak Ridge National Laboratory ⁵Johns Hopkins University

NSTX Physics Meeting

June 28th, 2010 Princeton Plasma Physics Laboratory

Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** NYU ORNL PPPL PSI **SNL** UC Davis **UC** Irvine UCLA UCSD **U** Maryland **U New Mexico U** Rochester **U** Washington **U** Wisconsin Culham Sci Ctr Hiroshima U HIST Kyushu Tokai U Niigata U Tsukuba U **U** Tokvo **JAERI** loffe Inst TRINITI **KBSI** KAIST ENEA. Frascati CEA, Cadarache IPP, Jülich **IPP.** Garching U Quebec

epartment of Fr

Continuation of XP1031 last week: MHD/ELM stability

dependence on thermoelectric J, edge J, v

Goals/Approach

- Test expectations ELM stability theory considering changes to edge toroidal current density, field-aligned thermoelectric current, and collisionality
 - 1) Generate target
 - 2) Vary TE current connection length at fixed 3D field (Vary x-point height; DRSEP)
 - 3) Vary 3D field amplitude
 - 4) Vary toroidal current density near the edge
 - 5) Vary collisionality with LLD

Data from last week

- **Ran** many shots on list (except reduced v); need to examine data in detail
 - X-point height and DRSEP varied separately (tricky for operators early on)
 - □ ELMs change with variation much detail to sort out here
 - Target reproduced with ELMs induced by 3D field
 - 50 Hz n = 3 field primarily used, DC field tried but led to rotation issues
 - Scrape-off layer currents detail measured by LLD shunt tiles / Langmuir probe arrays
 - \Box e.g. n = 1 clearly seen during initial part of ELM, changing to n = even
 - Evidence of ELM stabilization when positive edge current applied (constant B_t)

<u>XP1031: MHD/ELM stability dependence on</u> thermoelectric J, edge J, and collisionality – shot plan

Task Number of St	<u>umber of Shots</u>		
1) Generate target		completed	
A) Preferable is LSN ELMing plasma target (138129, or 137564), suitable for +/- Z movement	4		
- Add 3D field (use shot 138132); then try DC field - choose 3D field magnitude based on XP818			
- Plasma control: suggest (i) PF3-boundary position (squareness), (ii) DRSEP, (option: use outer S	Pc	ontrol)	
2) Vary TE current connection length at fixed 3D field			
A) LSN: (change PF3-boundary to vary Z, vary DRSEP independently if possible) (three Z positions)	6		
B) DND:	1		
C) USN: (two Z positions) - (contrast grad(B) drift direction / effect to condition (2A))	4		
3) Vary 3D field amplitude			
A) near marginal condition from (2), still ELMing, decrease $n = 3$ field until ELMs go away	3		
B) near marginal condition from (2), not ELMing, increase $n = 3$ field until ELMs return	3		
4) Vary toroidal current density near the edge		completed	
A) near marginal condition from (2), still ELMing, decrease I _p with slow ramp, attempt ELM stabilizatio	n 3		
B) near marginal condition from (2), not ELMing, increase I _p with slow ramp, for ELM destabilization	3		
C) redo (A) and (B) with TF ramp up/down to keep q approximately fixed	4		
5) Vary collisionality with LLD			
A) Rerun successful conditions above at reduced collisionality with LLD		16	
Total	: 31	; 16	

One XP1031 scan examined the effect of toroidal edge current change on ELM stability

ELMs generated when 3D field was applied

XP1031: Evidence of ELM stabilization with positive current ramp + 3D field during ELMing phase

H-mode terminates in ELM-free discharge from Prad increase

