

The Present Status of the High-k Scattering System

College W&M **Colorado Sch Mines** Columbia U CompX General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL PPPL **PSI Princeton U** Purdue U SNL Think Tank, Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Washington **U Wisconsin**

Y. Ren¹ E. Mazzucato¹, S.M. Kaye¹, R. Kaita¹, K.C. Lee², C.W. Domier², N.C. Luhmann, Jr.² 1. PPPL 2. U.C. Davis

NSTX Monday Physics Meeting July 19, 2010

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache **IPP**, Jülich **IPP**, Garching ASCR, Czech Rep **U** Quebec

The High-k Scattering System has been Taking Data Routinely

- An improved in-vessel calibration of High-k scattering system optics has been carried out in Dec. 2009 and the calibration and alignment have been well maintained.
 - Routine alignment was and will be carried out for very run day.
- All five channels are operational and the power responses have been determined with a calibrated microwave source.
- A solid-state microwave source was successfully tested and has replaced the carcinotron as the probe beam source.
 - Reliable and adjustment-free operation.
- Several upgrades have been implemented to enhance the control capability of high-k system:
 - Full remote control capability of high-k system mirrors: between-shot adjustments according to realized plasma equilibrium without controlled access.
 - Integrated user interface implemented for efficiently setting mirrors angles.
 - Remote control of electrical attenuations installed and working well.

Scattering Configuration Improved

- Previous experiments were only able to simultaneously utilize at most three out of the five receiving channels.
 - The probe beam hits the Y(spherical mirror and some of the channels have to be fully attenuated to protected detectors.
 - Adjacent channels can be overwhelmed by the stray radiation.
- To Launch the probe beam upward to prevent it from directly hitting the mirror.
 - No channel has to be fully attenuated.
 - The stray radiation on all channels are reduced.

Scattering Signals Obtained at All Five Channels

The Measured k_{\perp} Spectrum Shows Transition from Power law

- The k_{\perp} spectrum is obtained for almost a decade of k_{\perp} .
 - The k_⊥ spectrum exhibits a power law from $k_{\perp}\rho_s \approx 6$ to 11 with a spectral index of -6.2.
 - The k_{\perp} spectrum flattens at smaller k_{\perp} ρ_s , i.e. k_{\perp} ρ_s <6.

 We are planning to compare the measured k_⊥ spectrum with non-linear gyro-kinetic simulations.

Summary and Future Work on the High-k System

- The high-k scattering system is in good working condition now and will be routinely taking data throughout the run campaign.
 - Improved calibration, enhanced remote-control capability and reliable microwave source.
- We have improved the scattering configuration and are able to obtain scattered signals from more channels simultaneously than before.
 - This capability allows us to cover a wider range of wavenumbers and to make more detailed comparisons with gyro-kinetic simulations.
- Future work
 - To implement voltage surge protector to prevent amplifier damage due to NSTX events.
 - To implement remote control of optical attenuation.