Modeling of dust transport in NSTX with DUSTT/UEDGE code

R.D. Smirnov¹, S.I. Krasheninnikov¹, A.Yu. Pigarov¹ A.L. Roquemore², D.K. Mansfield², C.H. Skinner², J. Nichols³

> ¹University of California, San Diego, CA ²Princeton Plasma Physics Laboratory, NJ ³Cornell University, Ithaca, NY

> > NSTX Dust Physics Meeting July 26, 2010, PPPL

DUSTT/UEDGE code

- DUSTT solves coupled dust dynamics equations including temporal evolution of dust charge, temperature, mass, and radiation
- The DUSTT code operates with plasma parameters simulated with UEDGE
- The statistical averaging over an ensemble of test dust particles is used to obtain dust profiles and impurity source from ablated dust
- DUSTT/UEDGE are iteratively coupled for self-consistent modeling of dust impact on edge plasmas
- For interpretive modeling of dust transport, the background plasma parameters simulated with UEDGE should be matched as close as possible with experimental data
- Validation of the code is needed for various dust/plasma parameters for predictive simulations of dust impact on plasmas in ITER

Modeling of Li dust trajectories

- The experimental Li dust trajectories measured in NSTX are used for validation and parametric tuning of the DUSTT code
- NSTX UDN configuration is modeled close to discharge #135353

Experiment	Modeling
dust speeds ~10-100m/s	matched for dust sizes 10-20µm
Li dust lifetime ~10ms, grains can reach separatrix	reproduced with introduction of heat flux reduction factor (~50) imitating dust shielding by ablation cloud
dust grains with opposite toroidal flight directions are observed, some grains suddenly change direction (curvature ~few cm)	shear plasma flows in SOL with Mach~1 can cause change in toroidal flight direction in near separatrix regions

Reproducible features

Modeling of dust trajectories (continued)

Non-reproducible features

Experiment	Modeling needs
Li dust lifetime ~10ms, grains can reach separatrix	quantitative dust shielding models for different dust materials
sharp changes in dust trajectories outside the strong shear plasma flow regions	may be caused by non-accounted forces associated with non-uniformity of dust shapes and composition, transient plasma events
irregularities in dust trajectories are observed	

Identification and developing of models for the unaccounted processes affecting dust dynamics are needed

4

Various unaccounted forces

 These forces become important in stagnated plasma flow regions and may be responsible for "unusual" dust dynamics

• Injection experiments with specifically designed dust (non-spherical, bi-material, magnetic, etc.) may be used for evaluation of the forces

Modeling of Li dust injection

- NSTX L-mode LSN configuration is modeled
- ~40µm Li dust is injected in the upper outer poloidal position
- Dust hit the plasma with average speed ~5m/s and with shifted downward cosine angle distribution relative to vertical direction
- Divertor plates are assumed to be covered with Li film with recycling coefficients set at 0.8 for D and at 0.5 for Li
- Core D⁺ density is fixed at 5.1x10¹³cm⁻³
- Core heating power 3MW

Configuration of modeled Li dust injection

Impact of Li dust on edge plasmas

- Li dust injection with rates >~10mg/s can significantly increase impurity concentration and impurity radiation power losses in the edge.
- The radial plasma pressure gradients are substantially ~40% decreased in the edge improving plasma stability
- Gaseous impurities of the equivalent amount do not penetrate as deep into the plasma as the dust does

Impact of Li dust on divertor operation

- The power load to the outer divertor plate is significantly reduced
- Complete plasma detachment in the inner divertor at 10mg/s Li dust injection rates is developed
- ITER safety limit on dust accumulation (C,W,Be) implies dust production rate ~1g/s, impact of which on the edge plasmas needs to be evaluated

Summary

- The coupled DUSTT and UEDGE codes allow self-consistent modeling of dust transport and its impact on the edge plasmas.
- Main features of the experimental Li dust trajectories in NSTX can be reproduced with the simulations, validating basic modeling concepts. Nonreproducible dust dynamics features need further investigation.
- The simulations demonstrate that Li dust injection with rates >~10mg/s can have profound effects on edge plasma parameters, transport and stability in modern tokamaks.
- More studies are needed to investigate effects of dust injection in various scenarios and assess potential applications to heat flux mitigation on NSTX-U.
- Controlled dust injection experiments with well characterized and specifically designed dust can be used for validation and improvement of the simulation models for predictive ITER simulations.
- At present, rates of production and thermo-physical properties of natural tokamak dust are little studied, that makes modeling of such dust difficult.