

<u>XP1023: Optimized RWM control for high</u> $\leq \beta_{N} \geq_{pulse}$ at low collisionality and I_i

S.A. Sabbagh, J.M. Bialek, S.P. Gerhardt, R.E. Bell, J.W. Berkery, B. LeBlanc, J.E. Menard, et al.

De

Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, USA

Princeton Plasma Physics Laboratory

UPDATE on RWM B_R, and B_p+B_R sensor feedback Sept. 20th, 2010 Princeton Plasma Physics Laboratory

Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** NYU ORNL PPPL PSI **SNL** UC Davis **UC** Irvine UCLA UCSD **U** Maryland **U New Mexico U** Rochester **U** Washington **U** Wisconsin Culham Sci Ctr Hiroshima U HIST Kyushu Tokai U Niigata U Tsukuba U **U** Tokvo **JAERI** loffe Inst TRINITI **KBSI** KAIST ENEA, Frascati CEA, Cadarache IPP, Jülich **IPP.** Garching U Quebec

<u>Original three point B_r sensor feedback gain scan taken was</u> invalid – due to radiated power excursions (I_i increases)

XP1023 (Optimize RWM control low li, v) update 9/20/10 - S.A. Sabbagh, et al.

XP1023 (Optimize RWM control low li, v) update 9/20/10 - S.A. Sabbagh, et al.

<u>RWM B_R sensor n= 1 feedback phase variation shows</u> <u>clear settings for positive/negative feedback</u>

- B_r sensor feedback phase scan shows superior settings
 - Result clarified significantly by new MIU algorithm OHxTF compensation
 - Positive/negative feedback produced at expected phase values
 - 180° negative FB
 - 0° positive FB
 - n=1 growth/decay of other settings bracketed by 0°, 180° settings

XP1023 (Optimize RWM control low li, v) update 9/20/10 - S.A. Sabbagh, et al.

<u>Use of combined RWM sensor n = 1 feedback yields</u> <u>best reduction of n = 1 fields / improved stability</u>

- Varied levels of n > 1 field correction
 - n = 3 DC error field correction alone more subject to RWM instability
 - n = 1 B_p sensor fast feedback sustains plasma
 - Addition of n = 1 B_R sensor FB prevents disruptions when amplitude reaches ~ 9G, better sustains rotation

XP1023 (Optimize RWM control low li, v) update 9/20/10 - S.A. Sabbagh, et al.