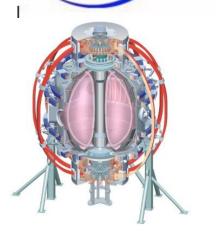


Some impressions from EPS 2011


Columbia U CompX **General Atomics** FIU INL Johns Hopkins U LANL LINL Lodestar MIT **Nova Photonics** New York U ORNL PPPL **Princeton U** Purdue U **SNL** Think Tank. Inc. **UC Davis** UC Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Washington **U Wisconsin**

V. A. Soukhanovskii

Lawrence Livermore National Laboratory

European Physical Society

38th Conference on Plasma Physics 27th June - 1st July 2011

38th EPS

Plasmas

Strasbourg

2011

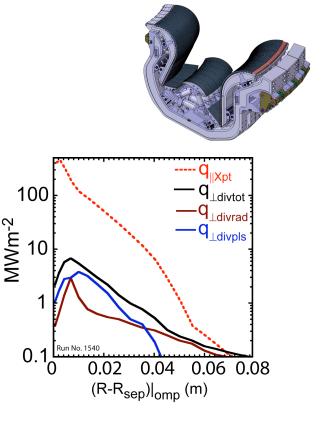
Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI NFRI KAIST POSTECH ASIPP ENEA. Frascati CEA, Cadarache **IPP, Jülich IPP, Garching** ASCR, Czech Rep

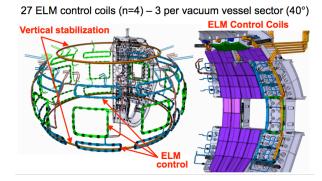
Office of

Edge and Boundary physics well represented in talks and posters at EPS

Talks:

- I1.002 Rudolph Neu Preparing the scientific basis for an all metal wall in ITER
- I1.301 R. Pitts The ITER plasma-wall interaction challenge
- I1.303 M. Groth Poloidal distribution of recycling sources and score plasma fuelling in DIII-D, ASDEX Upgrade and JET L-mode plasmas
- O1.301 P.W. Gingell Hybrid code investigation of the physics of multi-species plasma blobs in magnetic Fields
- O1.302 S. Takamura W nano structure
- I1.401 I. Furno Understanding and taming plasma blobs in toroidal magnetized plasmas
- I1.402 T. Windisch Nonlinear mode coupling and structure formation in drift-wave turbulence
- I1.403 O. F. Petrov Dusty plasmas in the presence of external forces
- 02.303 S. Potzel Detached inner divertor plasmas with and without Nitrogen seeding and RMP
- I2.109 Suttrop W. First observations of ELM mitigation with new active in-vessel saddle coils in ASDEX Upgrade
- 02.102 Huber, A. Radiation heat loads on plasma-facing components of JET during the massive gas injection experiment
- I3.110 Wiesen, S. Integrated modelling of JET type-I ELMy H-mode pulses and predictions for ITER-Like Wall scenarios
- I3.111 Feng, Y. Comparison between stellarator and tokamak divertor transport
- 03.107 Kurki-suonio, T. 3D ASCOT simulations of 13C transport in ASDEX Upgrade
- 03.108 Devaux, S. Surface layer effects on the heat loads on JET divertor plates
- 03.109 Soukhanovskii, V.A. The snowflake divertor: a game-changer for magnetic fusion devices?
- 03.110 Loarer, T. Isotopic plasma wall changeover experiments during long discharges in Tore Supra


And many more posters


The ITER plasma-wall interaction challenge – still much R&D needed

- R. Pitts "The ITER plasma-wall interaction challenge"
 - Complementary to R. Neu "Preparing the scientific basis for an all metal wall in ITER"
 - Why is PWI is challenging on ITER: Four main reasons (cf. with today's devices):
 - High stored energy; High plasma current; Long pulse, High fluence; Nuclear operation
 - PFC design
 - Four important areas where R&D is critical
 - heat fluxes (steady state and transient)
 - q_{\parallel} ~1 GW/m², λ_q ~5mm; partial detachment mandatory
 - Transients: disruptions and ELMs- mitigation mandatory
 - tritium retention

Lawrence Livermore

- recovery of inventory would be required every ~700 ITER full performance discharges
- material erosion and migration
- Dust
- \rightarrow all to large extent strongly interlinked

Edge and pedestal – focus on ELM suppression and pedestal structure studies

- Suttrop W. First observations of ELM mitigation with new active in-vessel saddle coils in ASDEX Upgrade
 - New coils n=2, both resonant and non-resonant MPs
 - Type I ELMs replaced by ELM-like small transport events
 - Event energy reduced, divertor heat flux reduced x 6-8
 - Plasma stored energy, ped. density unchanged
 - Core tungsten purged at nearly the same rate (cf. Type I ELMs)
 - Wide *q*₉₅ operating window
 - Recent PRL, Invited talk at APS DPP 2011
- Several tokamaks reporting pedestal structure studies over ELM cycle
 - TCV: Type I and Type III ELMs, + range of collisionalities
 - MAST
 - T_e , n_e , P_e gradients move inward during ELM cycle
 - P_e width increases, P_e height increases (mostly due to n_e)
 - Consistent with ELITE modeling

Divertor and plasma-surface interaction physics

- M. Groth Poloidal distribution of recycling sources and core plasma fuelling in DIII-D, ASDEX Upgrade and JET L-mode plasmas
 - Comparison of codes UEDGE, SOLPS, EDGE2D for well-diagnosed L-mode
 - Codes do not produce consistent poloidal fueling distribution
 - Predictions of the recycling locations and strength, and the SOL conditions are significantly uncertain
- Feng, Y. Comparison between stellarator and tokamak divertor transport
- Snowflake divertor
 - TCV: Effect of snowflake on ELM heat fluxes in inner divertor
 - FAST: possibility of snowflake configurations with existing 2-3 coil
 - The Fusion Advanced Studies Torus (FAST) conceptual study has been proposed as possible European ITER Satellite
- J. Strachan Tungsten Contamination by Neutral Beam Shine-through in the JET ILW
 - EDGE2D modeling of the effect of 120 keV NBI shine-through on tungsten sputtering: no significant core contamination
- M. Shimada Glow discharge cleaning on ITER
 - Design of ITER GDC system and modeling