

Columbia U

General Atomics

Johns Hopkins U

Nova Photonics

New York U ORNL

Princeton U

Think Tank. Inc.

Purdue U

UC Davis

UC Irvine

U Colorado

U Maryland

U Rochester

U Washington

U Wisconsin

U Illinois

UCLA

UCSD

CompX

FIU

INL

LANL

LLNL

MIT

PPPL

SNL

Lodestar

Supported by

Developing the Core Physics Scenarios For Next Step STs

Stefan Gerhardt

Friday AM Talk at 2011 APS DPP

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI NFRI KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache **IPP, Jülich IPP, Garching** ASCR. Czech Rep

Outline of Talk (20 slides)

- Intro (4 slides)
 - Describe why STs are (potentially) useful. (1 slide)
 - The NSTX facility. (1 slide)
 - Emphasize upgrades in the past 3-4 years that contribute to "advanced" plasmas (routine RMW control, Lithium, improved control).
 - What is the present "best" performance in NSTX. (2 slides)
 - Database analysis of operating space, example discharges.
- Describe results in three interacting areas (10 slides):
 - Transport (2 slides)
 - Lowest order scanlings....effect of Li?
 - Current drive (4 slides)
 - Cases that are approximately classical without *AE activity.
 - Phenomenological modeling of current redistribution with TAE Avalanches.
 - Achieved non-inductive fractions in NSTX
 - Stability (4 slides)
 - Importance of elevated q_{min}>1 to avoid core kink/tearing
 - Strong shaping, broad profiles.
 - RWM control
- NSTX-Upgrade Simulations (4 slides)
 - Describe the methods (1 slide)
 - Example profiles for 100% non-inductive cases w/ P_{inj}=12.6 MW, B_T=1.0T, including thermal profile and confinement scaling sensitivity. (1 slide)
 - Compare a broad range of upgrade scenarios to existing NSTX parameters (2 slides)
 - Separate 100% non-inducive and high-current partial inductive.
 - Emphasize what is similar (β_N , H), and what is better (lower collisionality, elevated q_{min})

2 Themes: • How facility improvements help with

scenarios

• How physics results support the modeling.

How Recent Facility Improvements Interact to Improve Performance

() NSTX

What is needed.

- Most of the data is well analyzed.
- Could use:
 - Finish upgrade modeling (SPG work).
 - Conclusion on the Li vs. no-Li confinement trends. Does collisionality explain everything? Pedestal vs. Core?
 - NSTX-U modeling assumes that ion transport remains neoclassical.
 Do we expect this to be true? GTS calculations started?
 - Elongation scaling of the no-wall limit in NSTX/NSTX-U relevant plasmas.
 - Conditions for TAE Avalanche onset in H-mode plasmas.
 - Is it necessary to say anything about disruptions...their frequency or predictability?

