

MAST Upgrade

Goals

- Demonstrate physics viability of a ST– based Component Test Facility
- Contribute to the ITER/DEMO physics base
- Demonstrate effectiveness of a flexible Super-X divertor

- Increased heating power (NBI, EBW)
 - adaptable system providing control of j(r), p(r), v(r)
- Relaxed current profile
 - fully non-inductive operation possible
- Increased TF, increased solenoid flux
 higher current, longer pulse routine operation
- Improved exhaust and density control
 - closed cryopumped divertor

Sector MAST Upgrade – stage 1 and full compared

	MAST	MAST-U	
		Stage 1	Stage 2 (proposed)
Power injected (NBI)	~5 MW	~7.5 MW	12.5 MW
Power injected (RF)	< 0.3 MW	<0.3 MW	1-2 MW
Toroidal field (R=0.8m)	0.55 T	0.84 T	
Energy deposited at $I_P=1$ MA	~5-10 MJ	< 30 MJ	< 63 MJ
Pulse length at $I_P=1$ MA (B _t >0.5T)	> 0.5s	~2-4s	< 5s
Plasma current flat-top	1.2 MA	~ 2 MA	
Profile control (J, p, flow)	~none	moderate	extensive
Particle control	~none	active	
'Routine' high elongation ²	1.8-2.1	2.5-2.7	
Divertor design	open	closed + SXD	

MAST super-X divertor

Super-X combines

- long connection length,
- flux expansion and
- large volume to radiate power
- to get cold low power density plasma at target
- MAST super-X has a low poloidal field region to increase connection length in limited space

Super-X mechanical design

CFE

MAST-U load assembly

- Modular design option for parallel assembly (keep shutdown short)
- □ Main engineering issues:
 - Centre rod+solenoid thermal + e.m. stresses
 - TF sliding joints thermal + e.m. stresses
 - Super-X divertor assembly and maintenance
 - magnetic alignment of coils

SOL ion energy measurements

Motivation:

- interpretation of probe data (n_e , P_{div})
- determines physical sputtering rates from plasma facing materials
- ELM ion energies in the far SOL unknown

 \Box First measurements show T_i ~ (1 – 2.6) x T_e at outboard mid-plane (much higher energies observed in fluctuations)

Ion energy in ELM filaments - large signals observed as far as 20cm from the LCFS and up to 500V of biasing

P. Tamain, S. Allan, S. Elmore (Liverpool U.)

ISTW & IAEA TM, NIFS, Toki, Japan September 2011

Retarding Field Analyzer (CEA)

RFA supplied by CEA Cadarache

SOL ion energy measurements

Installation of two new retarding field energy analyzers now allows simultaneous ion energy measurements in the divertor and at the outboard mid-plane

Divertor RFEA P. Ta

S. Allan, S. Elmore (Liverpool U.), P. Tamain (CEA), M. Kocan (IPP Garching)

Mid-plane RFEA

ISTW & IAEA TM, NIFS, Toki, Japan September 2011

Present status of QUEST QUEST

AFRC

T)
')
)
,

What are issues to SSO?

Non-inductive current drive

Ideally self-organized current such as BS current to alleviate less current drive efficiency

neo-classical current in low n_e at present and EBWCD in near future on QUEST

QUEST

AFRC

Heat and particle handling

Heat handling; Detached divertor, Ar and Ne injection Particle handling; Closed divertor, Hot wall, Enhanced pumping, Advanced fueling

• Integrated control including core plasma, PWI and wall.

Global plasma control, Turbulence control in core, Blob control in SOL, Wall conditioning

τ_{W} can be controlled by T_{wall} .

• TDS spectrum for Mo implanted D (2keV-D+, 3x10²¹ D/m²) at various temperature.

AFRC

- At the high temperature region, D does not absorbed in the material.
- We consider the high temp. wall works as the reflector of the particle.
- The number of stored particles depends on the targeted wall temperature.
- Hot wall around 673K could not have the property of pumping.

Steady state operation QUEST

AFRC

What is the reason of plasma termination? Hot spot on the outer wall

AFRC

Hot spots mainly appeared on the outer wall, increasing P_{RF} and pulse duration. The plasma current was reduced by the increment of out-gassing caused by the presence of the hot spots.

ISTW & IAEA TM, NIFS, Toki, Japan September 2011

Hot wall has been designed

QUEST AFRC

LATE is exploring non-solenoidal start-up by ECH/

LATE Parameters:

Vacuum vessel: diameter = height = 1m Center post : diameter = 11.4 cm Toroidal coils : 60 kAT (Bt ~ 0.5 kG), 10 s. or 120 kAT(Bt ~ 1 kG), 0.3 s. Vertical coils: 3 sets, Vertical position control coils: 1 set

Microwave Power: 2.45 GHz (65kW 2sec.): 4 magnetrons 5.0 GHz (~200kW ~0.07 sec.)

Diagnostics:

70GHz interferometer (4 chords), Fast visible camera, Flux loops, Langmuir probes, Spectrometer, SX cameras (1-poloidal) AXUV cameras (1-poloidal, 2-toroidal) 4-chord PHA system (2-tangential, 2-vertical),

Four launching ports for 2.45 GHz injection

Electron density depends on ECR location

R=27cm

B_T=0,072T

(high n_e)

- Plasma current is roughly the same (Ip~4kA)
- Current center (Rj) slightly depends on the resonance location but stays near the vessel center of R~25 cm
- Electron density significantly increases when the 1st ECR locates R~20-22cm
 → effective heating of bulk electrons by EBW is expected in this configuration

TST-2 spherical tokamak

- Major radius R ~ 0.35 m
- Minor radius a ~ 0.23 m
- Aspect ratio A = R/a > 1.5
- Toroidal field $B_t \sim 0.1 T$

For LHCD ramp-up operation

- Plasma current
 - I_p < 15 kA
- Discharge duration
 - Δt < 120 ms

Combline antenna

- This antenna is originally designed for fast wave excitation. However, FEM simulation predicts slow wave excitation.
- This is because the fast wave is cutoff for the density we consider.

SN75467

 A slight difference in effective temperature of Hard X-ray can be seen.

T _{eff_Co}	T _{eff_Ctr}
61 ± 6 keV	41 ± 5 keV