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 Fast particle driven modes in MAST cover a broad frequency range

- Alfvén Cascades (RSAE) TAE (ω ~ vA/2qR) CAE (ω ~ ωci)

Fast ion physics

Realistic tokamak simulation of
α-driven n = 3 core localized 
TAE using HAGIS

Frequency sweeping
TAE in MAST #22807
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S Pinches, S. Sharapov, M. Lilley (Chalmers U.), B. Breizman (U. Texas) et al

 Dynamical friction important for describing nonlinear wave evolution with
distribution of super-Alfvenic fast ions
– i.e. α-particles in ITER & DEMO and beam ions in MAST (vb >> vA)

 Drag and Krook relaxation have been introduced into HAGIS (non-linear drift-
kinetic f code) – quantitative comparison with MAST data underway
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 LOCUST-GPU calculates gyro-phase resolved, high resolution, smooth, fast
ion distribution functions suitable for fast ion stability calculations – development of
synthetic diagnostics to interpret neutron camera and FIDA data underway

 GPGPU: supercomputer on desktop.
 Fast particle physics needs detailed distribution functions for

- fusion product diagnostics (e.g. neutron cameras, proton first orbit detectors)
- drive for and loss due to instabilities (e.g. HAGIS code)

 Full orbit, high resolution. Fast: 2 million orbits in ~6hrs.

4 “gamer” GTX480
Fermi cards.

MAST steady-state fast ion distribution function. Two beams
including E0, E0/2 E0/3 species (6 in all)

GPGPU =
General Purpose
computation on
Graphics
Processor Unit

Fast ion simulation

R. Akers
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 Vertical and toroidal views - sensitive to
passing & trapped populations.

 Background views to exclude edge Da

 32 fibres/view (~ 2cm between channels)
with patch panel. 24 channels [2 x 12]; time
resolution: 0.28ms

 Spectral shape gives information on energy/pitch distribution and allows
exclusion of impurity/beam emission lines.

C. Michael et al

 System designed to give fast spectral information at the expense of
spatial resolution in order to follow fast events e.g. fishbone instabilities.

Fast ion D (FIDA)

Spectra Profiles

 First FIDA data
look promising
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 Remotely controlled scanning
capability

 4 channels

Neutron camera

M. Turnyanskiy, M. Cecconello (Uppsala) et al
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Neutron emission measurements

 Effects of ‘fishbone’ instabilities and
the long lived mode (internal n = 1 kink
mode)

M. Turnyanskiy, M. Cecconello (Uppsala) et al

fishbones

long lived
mode
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MAST Upgrade

 Project kick-off July 2010  Construction 2013 - 2015
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Advanced profile control

• On-axis  peaked.

Flexibility on fast ion density profiles

H Meyer
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Advanced profile control

• On-axis  peaked.

• Off-axis  hollow.

Flexibility on fast ion density profiles

H Meyer
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Advanced profile control

• On-axis  peaked.

• Off-axis  hollow.

• On- and off-axis  broad.

Flexibility on fast ion density profiles

H Meyer
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Slowly-evolving Gun-driven Plasmas 
Hand Off Most Efficiently to Ohmic Drive 

•  Poloidal flux generated by helicity injection is equivalent to that 
generated by Ohmic Drive 
–  Itotal = IHI + IOH 

•  Excessive skin current => poor coupling to OH drive 
•  Slowly evolving: ~ flat j(r) (black) 

–  Smooth handoff to Ohmic inductive drive  (j(R) profiles from external-only 
equilibrium reconstructions; li < 0.3) 

•  Rapidly evolving: ~ hollow, strong skin j(r) (red) 
–  Does not hand off efficiently to Ohmic drive 
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 #45736: 174 kA after 6.75 ms
 #47112: 135 kA after 8.40 ms

RJF ISTW 2011 



Initial Spectroscopy Measurements Suggest 
Energetic Ions 

•  Spectroscopic Ti suggest high ion energies during 
reconnection period 

 

 
•  However, situation is much more complex if viewed toroidally 

–  Need improved time-resolution and spatial scans 

Doppler Ti from radial view 
 
Complex multi-line structures 
 from tangential view 

RJF ISTW 2011 
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Principle of Alfven wave current drive

• Diagram of Alfven wave current drive (AWCD)
– The peristaltic Tokamak (Wort, 1971)

• Apply AWCD to SUNIST
– 4 pairs of strap antennas

– 0.15 T / 1E19 m-3, resonant frequency: 0.4 ~ 1 MHz

z

B
eE

dt

dv
m z

z
z




 

N J Fisch and C F F Karney, 1987

Resonant
condition：
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The driving force:

Vph is slow thus thermal
electrons are driven:

The schema:
Vacuum Vessel
Antennas
Plasmas



• Runaway discharges
are enhanced when:
– Low IP (~30 kA), low ne

(<1E19 m-3)

– Hard to understand
• The speed of rf phases and

the runaway electrons differ
by one order of magnitude

• Vc～1.5*10-2 (2πRn/V)/2 ～
2*107m/s (for ne～1018m-3)

• Vph～f2 π R ～ 1.5*106 m/s

• Normal discharges

– 50 kA，>1E19 m-3

– No effects observed

The effects of RF waves on IP

2011-9-29 17SUNIST

Runaway discharges

Normal discharges



LATE is exploring non-solenoidal start-up by ECH/ECCD

2.45GHz,
20kW, 2sec
#2

Polarizer

2.45GHz,
20kW, 2sec
#1

2.45GHz,
20kW, 2sec
#3

LATE Parameters:

Vacuum vessel: diameter = height =
1m
Center post : diameter = 11.4 cm
Toroidal coils : 60 kAT (Bt ~ 0.5 kG),
10 s. or 120 kAT(Bt ~ 1 kG), 0.3 s.
Vertical coils: 3 sets, Vertical position
control coils: 1 set

Microwave Power:
2.45 GHz (65kW 2sec.): 4 magnetrons
5.0 GHz (~200kW ~0.07 sec.)

Diagnostics:

70GHz interferometer (4 chords),
Fast visible camera, Flux loops,
Langmuir probes, Spectrometer,
SX cameras (1-poloidal)
AXUV cameras (1-poloidal, 2-toroidal)
4-chord PHA system (2-tangential, 2-
vertical),

2.45GHz,
5kW,



XUV and SX profiles show heating just before ECR layer

XUV

SX

XUV (a.u.)

SX (a.u.)
t=0.25s

0.2s

0.15s

0.1s

t=0.25s

0.2s

0.15s

0.1s

1st 2nd

• XUV and SX increase as Ip increases from 5 to 10
kA, while the line density is nearly the same.

• The increment is significant just outside the ECR
layer, indicating heating at the fundamental ECR
by EBW.



When we set the ECR layer at R<20cm, significant decrease in electron
density is observed.

• When we set the R1st < 20cm bulk density significantly decreased, while Ip ramps up
almost the same value of Ip ~ 10kA.

• SX and XUV profile shows significant decreases in the core region.

• How such a large difference arises?

BT=0.067T
(low ne)

1st

`ne ~ 2x1011cm-3

`ne = 2~5 x1010cm-3

~3 ncutoff

BT=0.072T
(high ne)

0.067T
(low ne)

XUV

SX

high ne

Low ne

Low ne

high ne

2nd

LCFS



Clear difference in the heat load to the outboard limiter shows
that the better coupling to bulk electrons at the higher density.

Heat load to the limiter in one shot (Qin ~ 8kJ)

1st 2nd

QTop ~ 0.05 Qin

QBot ~ 0.05 Qin

• At the lower density, heat load to

the outboard limiters increases as

QLim(R)/Qin ~ 0.13 0.25

indicating larger loss.

• Since the outboard limiter is

located far outside the LCFS, heat

load is mainly from high energy

trapped electrons.

discharge

Outboard Limiter
temperature

higher density

Lower density

• Heat loads to the top and

bottom limiter does not change

in the two discharge

• 2nd harmonic heating by EBW

may produce such electrons.

• Conversely, at the higher density,

the 2nd harmonic heating is

suppressed, better coupling to

the bulk may be realized.
20 sec

• The results suggests that larger

power is coupled to high energy

trapped electrons and lost to the

limiter at the lower density.

LCFS



Evolution of HX spectra (vertical chords)
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• This suggests that higher energy of trapped electrons exist outside LCFS
at the lower density.

• At the higher density, X-ray energy becomes lower suggesting the
production of trapped electrons are suppressed.

28 cm 35 cm

Higher density Lower density



The difference forward and backward HX spectra exists for the
both modes

Higher density Lower density
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• For both the modes, difference between forward and backward emission can
be seen, suggesting that current carrying tail electrons are produced similarly,
in spite of the trapped electrons.

Forward
Detector

Forward
Electrons
carrying Ip

Teflon Window
(2 mm thick)

Pb Collimator

Pb Shield

Bt

R = 25 cm

Backward
Detector

Ip
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