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Introduction

Observations on NSTX

EP instabilities are important for reactor planning

@ single particle confinement: drift motion, collisions,
distribution function

o effects on existing MHD modes, non-driven by fast ions:
internal kink, ballooning, NTM, ripples, RMP ...

@ induced collective effects:
@ excited instabilities, their effects, ... e-transport.

o Jow-f modes (still need to learn, nonlinear phys...)
@ high-f modes (less studied)

o EPM - energetic particle modes (“over-excited” instabilities)
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Larmor radius to a ratio

Fast particle beta to plasma beta ratio
low-f modes

high-f modes

NSTX broadened fusion research
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@ broadened VV |
@ new (sort of) discoveries: CAEs, a-channeling, e-transport, BAAEs...
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@ broadened VV |
@ new (sort of) discoveries: CAEs, a-channeling, e-transport, BAAEs...

led EP physics in STs
advanced ST EP physics towards (ST) reactor
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@ continue EP research

E.Fredrickson, S.Gerhard

@ similar’ity” param. regimes = study “smooth"” transitions in XPs?

@ given the opportunity for diagnostic upgrade,
position the program around urgent tasks,

CAE antennae, phase space engineering...
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Broad parameter space = many (typical) EP effects are reproduced:

multiple AE modes, EPM.
direct ITER relevance (res.overlaps, multimodes).
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parameter space is still broad
and yet close(?) to ITER plasmas, relevant physics (res.overlap, multimode exc.)...
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Major shifts in n per theory expectations (TAEs, Berk et.al. PLA '92. )
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Major shifts in n per theory expectations (TAEs, Berk et.al. PLA '92. )
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Other expectations:

@ RS plasmas most unstable (q,s7?!!, DIIID)
more valid transport, QL theory

codes are readily applicable

EP should be better confined, less losses
BAAEs to expore, similarity with DIIID.
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Other expectations:

RS plasmas most unstable (q,s??!!, DIIID)

kipr~1= ~1l=n~B=n=2-10
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more valid transport, QL theory

codes are readily applicable

EP should be better confined, less losses
BAAEs to expore, similarity with DIIID.
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Quasi-linear diffusion

see K. Ghantous talk next
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What should we expect? Why on NSTX CAEs have f ~ f /27
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What should we expect? Why on NSTX CAEs have f ~ f /27
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What should we expect? Why on NSTX CAEs have f ~ f /27

a-channeling arguments: To describe the drive:
frelate STs and tokamaks @ introduce continuous transition from
o NSTX (NBI) to TFTR (as),

09f VH/VA:4I‘/R.

@ low electron damping = outside of
curves 1 and 2
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NSTX-U resembles tokamaks:
(i) less modes for e-transp. (ii) antenna for a-ch.
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In contrast to DIII-D and TFTR (v|/va ~ 1), in NSTX the drive is large
(VH/VA > 1),

@ (FLR effect) low energy ions can have weaker interaction with the AEs,
and thus only high energy ions release their energy even if df /dv < 0.

6l — CAE 1
== GAE
o4 1
& | damping
(=]
w02 1
>
B smmea, e
380 ' .n LY
4 AT
X
<, ]
drive
4 ]
6 ]
0 1 2 K 3 4 5 6
P

. Gorelenkov et.al. NBI driven instabilities in N



Larmor radius to a ratio

Fast particle beta to plasma beta ratio
low-f modes

high-f modes

NSTX broadened fusion research

In contrast to DIII-D and TFTR (v|/va ~ 1), in NSTX the drive is large
(VH/VA > 1),

@ (FLR effect) low energy ions can have weaker interaction with the AEs,
and thus only high energy ions release their energy even if df /dv < 0.

N.N.Gorelenkov, NF'03.
6“ - CAE 1
-mm GAE
o4 1
& | damping
b2 —
R} pemmm
30 . = -1
- | 0 teaaa. -
X
<, ]
drive
4 ]
6 ]
0 1 2 K 3 4 5 6
P

N.N. Gorelenkov et.al. NBI driven instabilities in N



Larmor radius to a ratio

Fast particle beta to plasma beta ratio
low-f modes

high-f modes

NSTX broadened fusion research
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and thus only high energy ions release their energy even if df /dv < 0.

N.N.Gorelenkov, NF'03. For the drive we need:
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Summary

@ low-f instabilities are expected

@ continue VV, transport studies: *AE
@ MHD spectroscopy can be used to sharpen g-measurements

@ high-f instab spectrum should be less broad, less unstable

@ pay attention to “core localized” CAEs
@ phase space engineering.

@ e-transport is possible
@ a-channeling - new opportunities

N.N. Gorelenkov et.al. NBI driven instabilities in NSTX-U



	NSTX broadened fusion research 
	Summary

