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Motivation and goals

Startup of tokamaks typically uses loop voltage generated by the
central solenoid

e Can consume considerable volt-seconds

* The spherical torus — with a small central column — is sensitive
to this problem

Roger Raman — experiments on HIT-Il and NSTX demonstrate coaxial
helicity injection (CHI) to generate a startup plasma

Present study —resistive MHD simulations of CHI in the NSTX geometry
 Understand the physics and injection optimization
 Model injection in NSTX-U — prepare for experiments

* Prepare for simulations and experiments using non-inductive
current drive starting from CHI
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NSTX: Shots demonstrate expanding flux bubble,
ramp-up by induction with volt-sec savings
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MHD model — NSTX startup includes density and
temperature

* Equations include temperature and number-density evolution

2—’:+V°(nV)=V'DVn

ov .

p(E+V’VV)=JXB—Vp+V'pVVV

3 (4 . )
En(a+V-V)T=—nTV-V+V-[(K”—Kl)bb+KlI]-VT+nJ
oB .

- =Vx(vxB-nj)  yj-VxB

« Transport coefficients — K”~T5/2 ; N~T32; x , v=const.
« D — large for these simulations
* Boundaries — perfectly conducting
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Vacuum poloidal magnetic field — needed for CHI

Two options:

(1) External magnetic coils, e.g. with currents from the
experimental run

(2) Time-varying vacuum fields on the boundary — calculated
using the PPPL “LRDFIT” code (Jon Menard)

* Includes eddy currents in the NSTX structure and
conducting (passive) plates (ms time scale)

» This option is used in the work presented here
— Important for flux-bubble reconnection at end of CHI
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Boundary conditions for helicity injection

+ Rate-of-change of toroidal flux=V, .-V

nj— Yabs

- Toroidal flux — carried in by ExB flow at
injector and out by ExB flow at absorber

« Absorber voltage — determined by requiring
constant total vacuum toroidal flux (constant

bee)

- Prevents “pile-up” of flux above
“bubble” (would resist bubble expansion)

« Discharge (injector) current — measured by
change in RB above injector slot

- Injector current satisfies bubble-burst
condition: magnetic pressure drop across
bubble exceeds poloidal-field tension

L, > I = Klpiznj/uﬁlTFdz

Generalizes HIT-II model: R.A. Bayliss, C.R. Sovinec, and A.J. Redd, Phys. Plas. 18, 094502 (2011)
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A model of the NSTX helicity-injection capacitor
bank generates a time-dependent injection voltage

4.9 3 J

400 140 NSTX
4.8 8.5 injector
102.5 & 40 gap

R

Capacitor Snubber Shorting
bank switch

Resistances in mQ
Inductances in pH
Capacitors in mF

« Initial voltage — applied to the capacitor bank.
» Discharge current
— equals measured current
— decreases the capacitor voltage (as determined by
the circuit)

Other voltage models — e.g. constant in time — can be used
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Simulation and experiment — Shot 142163
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Notes: + Power supply capacitor charging voltage: simulation = 0.75 kV;
experiment=1.5 kV.

.-y UL_ + dV/dt is damped for stability reasons
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NSTX discharge 142163 — flux-bubble expansion
and contraction during CHI
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NSTX discharge 142163 — flux-bubble expansion
and contraction during CHI (2)
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NSTX discharge 142163 — flux-bubble expansion
and contraction during CHI (3)

ExMiro\nstx_2_142163.cin at 10.8833 ms
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Injection physics

 Temperature: Ohmic heating and energy losses

e Current distribution at the front of the poloidal-flux
bubble

* n=1 mode
» Effects of external plasma (outside the bubble)

* Flux-surface closure at end of the current drive
(ongoing research)
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Temperature: Computed electron temperature is
consistent with experimental measurements

Plasma temperature —
determined primarily by:

 ohmic heating

» thermal losses along
open field lines to the
wall

dT .
SnE ~ V,,(K” 'VuT) + 77||J||2

5/2
3/2
N~ eff/T/

SO
T~ (Zeﬁfjuf)

with ¢ an effective scale length

2/5
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Current distribution — Poloidal flux “piles-up” in the
“flux-bubble” surface layer
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A reversed poloidal current layer develops at the

surface of the expanding flux-bubble
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Axisymmetric poloidal current flow
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oY .
—+v-Vy=
o Y=nj,

(axisym. approx.)

Reversed toroidal current
results from “pileup” of
poloidal flux near the
surface of the bubble

Current is approximately
force-free; toroidal and
poloidal currents behave
similarly
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The axisymmetric toroidal current density reverses due to

Eoloidal-flux pile-up
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An n=1 toroidal mode develops as the flux-bubble
expands
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Injector voltage
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Kinetic (flow) energy in
n=1 mode grows rapidly
— approximately equals
axisymmetric kinetic
energy.

A series of relaxation
events follow.
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Velocity field after first large MHD event: symmetry-breaking
perturbation lies on the expanding bubble
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The velocity vortices form an helical structure aligned with
the axisymmetric field — confirmed in a 3D view
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The n=1 mode has only a minor affect on the n=0 evolution

Top of bubble
Position during injection

« n=1 mode broadens n=0
current distribution

* Results in a slightly faster
: evolution of the bubble, but
otherwise has little affect

Top of bubble, h (m)

| | NSTX23/n=0F 1E
6 6.5 7 7.5 8 8.5 9
t(ms)
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Plasma external to the expanding flux bubble affects its
evolution

Bubble expansion compresses and bends the magnetic field between it and the top of NSTX

+ Unconstrained plasma temperature — strong currents generated locally where the effect
is strong

+ Local plasma heating —currents increase

+  “Run-away” currents can be comparable to injected and toroidal currents in the bubble

In the experiment — ionization, radiation, and other effects limit plasma temperature

+ Rather than model this physics, we “clamp” external temperatures

Toroidal Current vs. t Perturbed magnetic field — generated by
plasma-flow and diffusion

1.5

@=Vx(va)+VxEVxB

ot u,
At 0.2 eV, diffusion dominates (n ~T-372)

lo; (105 A)
1.0

0.5

At 2 eV, flows are more concentrated and
dominate field evolution
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t (ms) The experimental temperature is not known
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Plasma expansion is primarily determined by the injected
flux (axisymmetric approximation)

1.5

-
T

Helicity (2x linked toroidal
and poloidal fluxes) can be
used instead of injected flux

o
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\

o
T

In the absence of magnetic
reconnection, the toroidal
flux is proportional to
helicity
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Flux-surface closure at end of injection — Bias flux
programming
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Flux surface closure — necessary to transition to non-CHI current drive

In experiment — generated by

- Short-circuiting applied voltage

- Removing bias poloidal field — see below
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Closure — possible magnetic reconnection mechanisms

Magnetic reconnection can occur via:

- Resistive diffusion (possible in axisymmetric system)
Symmetry-breaking fluctuations

Experiment does not observe fluctuations — suggests resistive diffusion

3/2
Diffusion time for spatial distance x is ¢, ~ Lo Z;llx2
n

At10eVand 0.1 m — ¢, ~ 0.1 ms — consistent with closure times

observed in experiment

- But — relatively high temperature must be maintained in the current
channel to minimize flux decay

Other effects also may be important

If the injected current returns in the central column reconnection is
apparently impeded

—
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Effect of injector current return path on flux closure

Over-driven injection — Injector current returns in central column
* No flux surface closure

Clamping temperature (0.7 eV) at top of flux bubble forces current to return in the

plasma

Flux surface closure
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T ~ 20 eV near x-point; similar for both cases
Temperatures in current channel = 5-15 eV
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Summary — Results of resistive MHD simulations of CHI in NSTX

- Reproduce most experimental features of CHI

— The shape and evolution of the flux bubble are in good, semi-quantitative
agreement with experiment
— Temperatures are in approximate agreement with experiment

Detailed current density and velocity distributions are analyzed

- An n=1 mode impacts details of the injection but apparently has no major
consequences

Temperature of the plasma outside the bubble affects flux evolution

 Flux-surface closure has been demonstrated

— The volume of closed surfaces is small in present simulations

— External plasma effects appear to be important

— Understanding closure physics and optimizing the closed volume is
“work in progress”

—
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