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NTM Avoidance and Suppression: PHYSICS 
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Electron Cyclotron Heating Basics 

•  Electrons gyrate around magnetic field lines 
as they travel in the toroidal direction. 

•  A microwave beam at the electron cyclotron 
resonant frequency will deposit energy into 
the electrons.  

–  Heating [perpendicular injection] (ECH) or current 
drive [tangential] (ECCD) 

–  Localized deposition  

•  Microwave beam is generated at a gyrotron, 
passed through ~100m of waveguide, then 
directed by the ECH launcher.  

•  General Atomics 6 gyrotrons ~4MW for 
5-10sec, KSTAR 1 beam * 1MW for 5-10 sec. 

•  Previous studies show: 2/1, 3/2 islands can 
be suppressed and avoided by depositing the 
ECCD at or close to the island location. 
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Case for Real-time Steerable Mirror 

•  Previously: Intersection of the 2fce 
surface with q-surface was changed by: 

–  Moving the plasma radially to change the q-
surface that intersects 2fce surface. 

–  Change BT to move 2fce surface 

•  These methods are slow and change the 
plasma equilibrium. Never used in 
physics XPs due to these limitations. 

  Real-time steerable mirror control of the 
EC deposition location 

–  Faster NTM suppression 

–  Capability to run experiments consistently in 
high beta. 

–  Possibility to control NTMs with lower EC 
power. 

–  Suppress multiple islands at the same time  
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NTM Avoidance and Suppression: HARDWARE 
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Real-Time Steerable Mirrors to Control EC Deposition 

Designed by Robert Ellis of PPPL 
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Electronics and Software: Motor Controllers, ECH 
Communication Computer, Mirror Net and PCS 

•  Upgraded and installed new motor control hardware (chips etc.) for 
the six mirrors. 

•  Upgraded the encoder reading hardware in order to reduce noise. 

•  Wrote new embedded control algorithms for faster processing, faster 
and more accurate position read out, increased robustness and 
hardware protection.  

•  Designed new optimal controls for the mirrors that can accomplish 
close to the maximum mechanically possible speed with smooth 
operation and with a few millimeter accuracy of alignment of the 
ECCD in the plasma.  

•  Designed a new architecture that enable real-time control of the 
mirrors form the PCS. 

•  Wrote a new PCS and embedded algorithm to reduce the latency 
between the PCS and the mirrors. 
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Latencies of the System (6-14 ms delay) 

PCS 

Motor Control Input 

Motor Control Chip 

Motor 

Mirror 

Motor Read 

100 microsec 

1.8 millisec 

~ <1millisec 

~ <1 millisec 

~4-12 millisec 
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Feed-forward EC Mirror Control 

•  Successful real time motion of all six mirrors. 

•  Control speed (~2m/s) is close to the maximum mechanically possible with smooth operation. 

•  Accuracy << 1 cm in Z direction (0.0-0.3 cm) 

•    
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NTM Avoidance and Suppression: DIAGNOSTICS 
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ECE Based ECCD Deposition Calculations 

•  Module EC at 70/100Hz to locate the deposition 
location with ECE/ECEI (>80 duty cycle is OK). 

•  Calculate for the amplitude of the EC modulation 
frequency in ECE channels. 

•  Interpolate to find the peak amplitude location which 
corresponds to the EC deposition location 

Ch5 

Ch8 

Ch10 

Ch8 

Ch5 

ECE Channel corresponding to peak deposition  
vs. Mirror Position 
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ECE Based ECCD Deposition Calculations 

•  Module EC at 75/100Hz to locate the deposition location with ECE/ECEI. 

•  Look for the amplitude of the EC modulation frequency in ECE channels 

•  Interpolate to find the peak amplitude location which corresponds to the EC 
deposition location 

ECE based EC deposition location calculation 
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ECE Based NTM Location Calculation 

•  NTM displaces the flux surfaces 

•  This leads to 180 degree phase shift  

in the ECE data across the island.  

•  Use this condition to find the island location 

•  Get the NTM frequency from Mirnov Y. S. Park, “Plasma Phys. Control. Fusion 48 (2006) 1447–1454” 
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ECE Based NTM Location Calculation 

•  Find the frequency of the NTM from 
Mirnov. 

•  Find the amplitude and phase of 
this frequency from ECE channel. 

•  Better accuracy than MSE.  

•  Also, avoid the offset in MSE due to 
misalignment of the rational q-
surface and NTM.  
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Current Development: Align the EC Deposition and NTM 
Location Using ECE 

•  Great for ITER NTM control! 

–  Using the same diagnostic for target and current position (no cross calibration) 

–  No need Ray Tracing! This is very hard due to not good/available density 
measurements and calibration problems.  

–  High accuracy and self consistent data. 

–  Easy to control: Just take the difference and feed to the mirror control! 

+ 
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CONTROL 
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•  Advantages: 
–  Only a single experiment is needed  

to tune many different regimes. 
–  Closed loop:  

1.  More stable   
2.  Enable tuning for actuator that can’t be open 
loop (e.g.: Vertical Ctrl, EFC). Methods exist to join with the existing control 

Control  
Output 

h 

Pu 

A

Experimental PID Tuning:  
Closed Loop Auto-tune with Relay Feedback 

•  The closed-loop plant response period 
(Pu) & amplitude (A) give (for example): 

 [P,I,D]=4h/(πA)*[0.6, 2/Pu, Pu/8]  
Process 
Output 

  

h 

E. Kolemen et al 2011  
Nucl. Fusion 51 113024 
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NTM Avoidance: Feed-back q-surface Following 

•  Calculate the q-surface location corresponding the NTM mode (3/2, 2/1). 

•  Request the mirror to move to follow the angle that correspond to 
intersection of the q-surface with the 2fce using Ray tracing. 

•  Control designed for tracking performance using Relay-Feedback. 

•  Great performance with <<1 cm error. 
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NTM Avoidance: Feed-back q-surface Following 

Shot with 3/2 NTM  
(Almost no ECCD) 

NTM Avoidance with ECCD 
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NTM Suppression: Feed-back q-surface Following 
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NTM Suppression: Mirnov Magnitude Based Control 

•  Mirnov based Feedback Control 

–  Sweep around the NTM, look at the Mirnov amplitude to find the sweet spot. 

–  Go to the sweet spot and stay there. 

•  Example Shot where partial suppression is achieved is shown above. 
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Catch and Subdue (In Development):  
NTM Suppression Before Mode Saturation 

•  Aim: Suppress the NTM before it saturates  

–  Less power, more stable 

•  Detect that island is forming 

–  This is done with Mirnov ~ 20-40 ms. 

•  Find the location of the island 

–  Use ECE for target (NTM location) and current (EC deposition) position. 

•  Move the EC mirror to the island location 

–  ~1-2 cm motion in plasma to hit the island (~30-50 ms) 

•  Catch the island before it saturates 

–  Island saturation is a variable but for 3/2 mode ~150-200 ms can be taken as 
guiding conservative value 

–  We need to hit the island as soon as possible but definitely before it saturates  

–  Spec for time from the detection to start of ECCD @ island <~50 ms. 
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Snowflake Divertor for DIII-D  
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DIII-D Scenarios with Snowflake Variants  

•  Engineering constraint: F9B had to be kept at 
negative current to avoid strike point getting 
in the cyro-pump gap.  

•  Due to the complicated PS at DIII-D.  

–  Need a new patch panel configuration 

–  Need configurations that satisfy VFI constraints.  

•  Progress to achieve the configurations: 

–  Obtained desired current levels for the coils. 

–  Studied different variations around these configs. 

–  Best option is to use the F4B and F8B to control 
the strike point locations. 

–  Scan the F5B in steps to see the various 
snowflake configurations achieved. 

•  Full control of the feedback control of 
snowflake to follow. 



25 

Egemen Kolemen / July 2012 

Constrained DIII-D Scenarios with Snowflake Variants  

•  Perfect snowflake and snowflake flake -/+ are possible at DIII-D with 
various engineering and power supply constrains of the system. 

DIII-D Coil Configuration 
DIII-D Perfect Snowflake 

DIII-D Snowflake + DIII-D Snowflake - 

x 

x 
x 

x 

x 
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•  We are running this Thursday and 
depending on the results, we will be 
given more days. We can easily do 
snowflake control if we are given time.
• Above: Snowflake tracking for NSTX: 

•  Red cross is the tracked snowflake 
centroid

•  Black crosses are the calculated 
X-points locations by the 
snowflake tracking algorithm

• Below: X-point position computed from 
the radius and angle obtained from the 
snowflake tracking and position of the 2nd 

X-point.
• Use these methods control and asses 
the snowflake at DIII-D. 
• PCS upgrade needed (minimal).

Ref. M.A. Makowski & D. Ryutov, “X-Point Tracking Algorithm for the Snowflake Divertor”  
M.V. Umansky et al.. “Analysis of geometric variations in high-power tokamak divertors.” 

Feedback: Tracking and Control for Snowflake -/+ 
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BetaN Dependent Error Field Correction 
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BetaN Dependent Error Field Correction 
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BetaN Dependent Error Field Correction 

•  There is a BetaN dependence of the EFC control parameters. This is in 
addition to the general increase in current as the plasma evolves 
leading to increased Error Field in say F7B. 

•  Previous way of operation: Multiplying the control by random constants 
at higher BetaN. 

•  We added EFC algorithm with BetaN dependence. 

•  The algorithm is test in experiments. 

•  I hope to study the optimal EFC for BetaN and improve performance of 
the H-mode marginally stable shots. Does 3D coils penetration in the 
plasma or interaction with the plasma reduces as BetaN increases? 
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Thank You! 
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Present ECCD Deposition Calculations: Ray Tracing 

•  Ray tracing: using the density profile find 
the diffraction and path of the ECCD 

•  Using EFIT and MSE find the intersection of 
the 2 fce and the ECCD path. 

•  Problem: Too many diagnostic errors add up 
(MSE+EFIT+Density). Density profile is not 
really know that well. 


