APS invited: Assessing low wavenumber pedestal turbulence in NSTX with measurements and simulations — D. R. Smith, R. J. Fonck, G. R. McKee, et al.

- Validation of pedestal models is critical for ITER, and ST pedestal turbulence simulations are among the most difficult.
- Objectives
 - Characterize low-k pedestal turbulence (ELM-free, MHD quiescent) with BES measurements
 - Identify **parametric dependencies** among turbulence quantities and plasma parameters
 - Perform gyrokinetic and fluid simulations of NSTX pedestal turbulence and compare to measurements and parametric dependencies
- Low-k pedestal turbulence in ELM-free, MHD quiescent H-modes
 - $\ L_c/\rho_i \sim 10 \qquad k_\theta \rho_i \sim 0.2 \qquad \tau_d/(a/c_s) \sim 5$
- Parametric dependencies from regression analysis and model aggregation
 - ITG: ∇n_e , ∇T_i , and v scalings are *inconsistent*; T_e/T_i scalings show mixed agreement
 - TEM: ∇n_e and 1/L_{Te} scalings are *consistent*; T_e/T_i and v scalings show mixed agreement
 - KBM: β_e scalings are *consistent*; ∇n_e , ∇T_i , and $1/L_{Te}$ scalings show mixed agreement
 - μ -tearing: β_e and v_e scalings are *consistent*; $1/L_{Te}$ scaling is *inconsistent*
- Gyrokinetic (GEM and XGC1) and Braginskii fluid (BOUT++) simulations
 - GEM: linear growth rates increase with ∇n_e and decrease with ∇T_i in **agreement** with measured L_c parametric dependencies and absence of ITG turbulence
 - BOUT++: $L_c/\rho_i \sim 8$ and $k_{\theta}\rho_i \sim 0.7-1.4$ **compares favorably** with measurements (single, non-representative simulation; analysis ongoing)

