Edge Transport Calculations using XGC0 for QH-mode on DIII-D

by Devon Battaglia

in collaboration with J.A. Boedo, K.H. Burrell, C.-S. Chang, J.S. DeGrassie, B.A. Grierson, R. Groebner, R. Maingi, W.M. Solomon

Presented at the NSTX-U Science Meeting March 4th, 2013

QH-mode: Stationary ELM-free H-mode is Maintained with an Edge Harmonic Oscillation (EHO)

- EHO increases edge particle transport
 - EHO multiple n-harmonic EM mode
 - Maintains edge pressure less than (or equal to) peelingballooning stability
 - Stationary ELM-free H-mode with good thermal confinement
- Typically achieved with counter-I_p torque, strong pumping, large T_i, low density

K. Burrell et al., PoP 12 (2005)

Interpretive XGC0 Calculations Toward Elucidating Transport Mechanisms in H-mode Regimes

• JRT13: Stationary ELM-free H-modes

- QH-Mode, I-mode, EPH-mode, RMP ELM suppression
 - Suitable particle transport while maintaining good thermal barrier
- Common thread: edge plasma mode or applied 3D fields
- Apply interpretative XGC0 calculations to elucidate the role of neoclassical and anomalous transport in standard and enhanced H-mode regimes
 - XGC0: Full-f Neoclassical with neutrals + ad-hoc anomalous
 - What is the nature of the pedestal transport in different regimes?
 - Ultimate goal: quantitative model for predicting and optimizing pedestal and SOL transport
 - Pedestal height, width and stability
 - Intrinsic rotation, momentum transport and E_r
 - Divertor particle and energy loads

Outline and Conclusions

- Interpretive XGC0 pedestal transport calculation
 - Tune free parameters of calculation to match experiment data
- Neoclassical transport in low-power H-mode
 - Ion transport through the pedestal is neoclassical
 - Measured intrinsic rotation implies an anomalous radial current in the pedestal (consistent with anomalous electron transport)

• Neoclassical transport in QH-mode

- Nature of transport is very similar to H-mode
 - Ions are neoclassical, electrons are anomalous
- Single particle orbit effects seen in experiment are quantitatively reproduced by XGC0
 - Temperature anisotropy, SOL ion temperatures and intrinsic rotation

Thermal Ion Orbit Loss Impacts Transport within Pedestal and SOL

- Loss of counter-I_p ions and confinement of co-I_p ions
 - Non-ambipolar since ion banana width >> electron
 - Leads to "intrinsic" flows and energy anisotropy
- Maintain ambipolar transport by...
 - Negative E_r to squeeze orbits
 - Or, remove orbit effects through large collisionality
 - Or, Ion orbit loss balanced by some other nonambipolar process

J.S. deGrassie et al. Nucl. Fusion **52** (2012) 013010

(a)

Edge Main-Ion Flows are Consistent with a co-I_p Intrinsic Torque due to Loss Hole

- Plunging probe provides high resolution edge measurements
 - Large edge deuterium flows in both ECE-heated L- and H-mode
 - Edge co-I_p flows can be >> core, peak near separatrix
- ELM-free H-mode period with small fluctuation amplitudes

XGC0: Self-consistent Neoclassical Ion Transport, Realistic Sources and Sinks, and Magnetic Geometry

• Full-f calculations using XGC0

- Solve drift kinetic equations for millions of particles (C⁺⁶, D⁺, e⁻)
- Axisymmetric (2D space), Full-f gyrokinetic (2D velocity)
- Magnetic geometry from EFIT
- Monte-carlo neutral fueling calculation
- Potential adjusted to maintain ambipolar transport
 - Potential is a flux function ($E_{\parallel} = 0$)

• H-mode pedestals have Non-Maxwellian Ion Distributions

Interpretive XGC0 Modeling used to Elucidate Transport Mechanisms in Low-Power H-mode Pedestal

- Initial simulations with reduced physics model
 - Self-consistent recycling is only particle source
 - C⁺⁶ is the only impurity
 - Adiabatic electrons (electron profiles held constant)

Four free parameters

- Anomalous random-wallk diffusion step-size		H-mode
• Pedestal ($\psi_N < 1$)	D _{anom-ped}	0
• SOL ($\psi_N > I$) - Anomalous radial current	D _{anom-SOL}	0.2 m²/s
 Anom viscosity or apply external torque 	η _{anom}	0.6 m²/s
- Core ion heating ($\psi_{\rm M} < 0.95$)	lon heat	0.55 MW

- Core ion heating ($\psi_N < 0.95$)
- Values chosen so steady-state XGC0 profiles = experiment

Excellent Quantitative Agreement for the Density Profiles is Achieved with Self-consistent Recycling

- Edge GC density profiles match experiment with recycling source
 - No core source, recycling sufficient to maintain pedestal
 - C and D density profiles are different
 - Density mostly constant along a flux surface for $\psi_N < 1$
- Neoclassical ion transport in the H-mode pedestal
 - ELM-free and low turbulence
 - $D_{anom} = 0.2 \text{ m}^2/\text{s in SOL}$

D.J. Battaglia, 54th APS DPP – Providence, RI November, 2012

Ion Orbits in the Pedestal Lead to Anisotropic Temperatures Near the Separatrix

- Ion temperatures reproduced
 - Ion heating 0.55MW
 - ~ 33% of P_{loss}
 - $T_i > T_e$ around separatrix
 - Spike in T_C at separatrix

Temperatures are anisotropic around separatrix

- Discussed later in more detail

D.J. Battaglia, 54th APS DPP – Providence, RI November, 2012

Parallel Deuterium Flow and E_r in Good Agreement with Mach Probe and CER measurements

- Anomalous Viscosity (η) ...
 - Reduces E_r well
 - Increases edge v_{para}
- Flow peaked at outboard midplane
 - Flux surface averaged v_{\parallel} for D and C^{+6} are similar

v_{para} Outboard midplane

D.J. Battaglia, 54th APS DPP – Providence, RI November, 2012

Density and Temperature Profiles Reproduced with Two Flavors of Anomalous Transport in the Pedestal

	Non-ambi	Ambi	
D _{anom-ped}	0	0.02 m ² /s	
D _{anom-SOL}	0.2 m²/s	0.2 m²/s	
η _{anom}	0.6 m²/s	0	
lon heat	0.55 MW	0.50 MW	
$\Gamma_{i,neo} =$	$\Gamma_{ m anom}$	0	

- Best agreement: Ion orbit loss balanced by anomalous radial current
 - More positive E_r well
 - More peaked intrinsic flow due to loss of counter-I_p ions

Initial Prediction: Edge Modes (like EHO) Switch Transport from Non-ambipolar to Ambipolar

- Maintain same particle transport, but ...
 - E_r is more negative, shutting off ion orbit loss
 - Improves thermal confinement
 - Reduces edge co-l_p torque
- A good idea (?), but it doesn't seem to be the case
 - QH-mode transport qualities similar to H-mode
 - Focus of the rest of the talk

Edge Sweep Data Provides High Resolution Measurements to Compare to XGC0 Results

QH-mode edge sweep

- Stationary profiles with 400ms edge sweep across diagnostic channels
- E_r from C⁺⁶ force balance

- New: including full-f electron calculations
 - Self-consistent sheath
 - Elucidate electron transport properties
- New: finite D needed at top of pedestal
 - Large turbulent transport in high power H-mode

- Top of pedestal (I)
 - 3.0 MW Ion heating
 - 5.0 MW Electron heating
 - 9 MW beam power •
 - 110 Amps of D⁺, e⁻
 - 75% beam flux
 - Inner boundary E_r fixed —
 - Fixed core rotation
 - 0.5 0.8 m²/s randomwalk ambipolar diffusion
 - Kick guiding centers ~ 0.1 mm step in random direction

- Steep gradient region (II)
 - Similar to low-power Hmode case ...
 - 0 0.01 m²/s random-walk diffusion
 - Ion transport is neoclassical
 - Anomalous radial current
 - In model, anom • viscosity or apply ~0.5 Nm Co-I_p torque

- Paleoclassical-like random-walk ambipolar diffusion
- Order-of-magnitude larger anomalous electron thermal transport

$$- D_{anom} \sim T_e^{-3/2} \sim 0.1 \text{ m}^2/\text{s}$$

$$-\chi_e \sim T_e^{-3/2} \sim 1 m^2/s$$

SOL (IV)

- D recycling ~ 97%
- C recycling = 100%
- Random-walk diffusion ~ 0.1 m²/s and $\chi_e \sim 1 \text{ m}^2/\text{s}$
- "Global" sheath
 - Potential adjusted to maintain ambipolar transport to wall
 - Zero resistance to wall • currents
- Carbon line emission loss model

Electron Profiles in Good Agreement with Measured Profiles

 Electron profiles very sensitive to sources, sinks and anomalous transport levels

- Density in SOL is usually under predicted

- Primitive impurity line radiation calculation based on average Z_{eff}
- T_e is constant and n_e is mostly constant on a flux surface inside separatrix
 - Poloidal asymmetries requires E_{II}
 - XGC-A will fix this

Carbon Density Profile Reproduced with Only Recycling as a Source

- Carbon GC density close to experimental profile
 - Some poloidal asymmetry in carbon GC density at top of pedestal and around separatrix
 - Current task: Translating GC density into true density

Ion Distributions are Non-Maxwellian Throughout the Pedestal

XGC0 Reproduces Anisotropic C⁺⁶ Temperatures at Outboard Midplane

- XGC0 and CER agree ...
 - $T_{perp} > T_{para}$ in steep gradient (mostly on outboard)
 - T_{perp} soars in SOL: deeply trapped orbits from top of pedestal
- XGC0 has yet to reproduce $T_{para} > T_{perp}$ in far SOL
 - Beam physics? Finite E_{II}? Atomic physics? Diagnostic effect ?

Self-consistent E_r Calculation in Good Agreement with E_r Derived from CER Profiles

- Good agreement between XGC0 and CER when ...
 - At least 0.5 Nm of toroidal Co-I $_{\rm p}$ torque in steep pedestal region
- Gives confidence that non-Maxwellian effects are a small correction to force-balance E_r calculation from CER

Conclusions from Interpretive XGC0 Calculations of Edge Transport in H- and QH-mode

- Transport in steep gradient region: Kinetic neoclassical ion transport balanced against anomalous radial current ($\Gamma_{i,neo} = \Gamma_{anom}$)
 - Radial current equivalent to about 0.5 Nm co- I_p torque
 - Density maintained by including recycling physics
- Anomalous transport at the bottom of the pedestal (Paleo-like)
- Single-particle orbit effects drive temperature anisotropy, intrinsic flows and poloidal asymmetries in the pedestal and SOL
 - Separation of particle and thermal transport (JRT13)
- H- and QH-mode have similar transport properties with very small anomalous ion transport in steep gradient region
 - EHO only impacts electron transport?
 - EHO only impacts transport at top of pedestal?

Future Work

- Full-f synthetic diagnostics for CER and Mach probe ion measurements
 - Quantify agreement between experiment and model
 - Guide interpretation of CER spectrum, especially edge Main Ion
- Include more physics to possibly reduce free parameters
 - Directly calculate Paleoclassical transport levels
 - Gyro-averaging may capture anomalous viscosity
 - Add KBM or EHO level EM fluctuations
 - Impact of E_{\parallel}
- JRT13: Compare transport mechanisms of H-mode to ELM-free H-modes (QH-mode, EPH-mode, I-mode ...)
- H-mode intrinsic rotation scaling vs edge parameters

EHO oscillation amplitude peaks at top of pedestal

 Spatial calibration suggests EHO peaks at top of pedestal

D.J. Battaglia, NSTX-U Science Meeting, March 4, 2013

NATIONAL FUSION FACILIT

Anomalous transport in XGC0

- Random walk diffusion and convection
 - D in m²/s at outboard midplane
 - X in m²/s at outboard midplane for each species

$$R = R + \left(\frac{D}{R} + \frac{dD}{d\psi}\frac{d\psi}{dR} \pm \sqrt{\frac{2D}{\Delta t}}\right)\Delta t + \chi V \frac{d\psi}{dR}\Delta t$$
$$Z = Z + \left(\frac{dD}{d\psi}\frac{d\psi}{dZ} \pm \sqrt{\frac{2D}{\Delta t}}\right)\Delta t + \chi V \frac{d\psi}{dZ}\Delta t \quad V = -\frac{2}{3}\left(\frac{K}{T} - \frac{3}{2}\right)\frac{dT/d\psi}{T}$$

- Radial smoothing of $d\phi/d\psi$
 - η in m²/s at outboard midplane

$$\frac{d\phi}{d\psi} = \frac{d\phi}{d\psi} + \eta \left(\frac{d\psi}{dr}\right)^2 \frac{d^3\phi}{d\psi^3} \Delta t$$

X-transport torque is thought to be a significant source of edge intrinsic rotation

- Reynolds stress from Mach probe measurements under-predict intrinsic edge torque
 - Solomon empirical DIII-D scaling for edge intrinsic torque has improved fit when including X-transport parameters
- XGC1 simulations qualitatively agree with experiment
 - Co-I_p Reynolds stress from first-principles turbulence model is small
 - Counter- I_p neutral torque is small
 - Co-I_p X-transport torque dominates near separatrix

W.M. Solomon et al. Nucl. Fusion **51** (2011) 073010

Measurements Suggest Single Particle Physics and Sheath Physics is Important

- Ion Temperature Anisotropy
 - T_{perp} > T_{parallel}
 - Large C⁺⁶ temperatures in SOL with T_{para} > T_{perp} in far SOL

Rotational shear in pedestal

- Torque from non-Maxwellian distributions and orbit loss
- Switch from negative E_r in plasma to positive E_r in SOL

Observation: Both Main Ion Toroidal Flow and Poloidal Flow Shear ~ 0 at E_r well ... EHO Requirement?

- Counter-I_p torque from beams, Co-I_p intrinsic edge torque
 - Main Ion flux-surface-averaged parallel flow zero crossing aligns with bottom of E_r well
- Low perpendicular flow shear, low parallel flow ...
 - A recipe for resonant kink?
- Also note ...
 - Ions flowing into divertor in SOL
 - Large main-ion outboard flow

D.J. Battaglia, NSTX-U Science Meeting, March 4, 2013 $\,\Psi_{N}$

Deuterium Temperature Anisotropy is Similar to Carbon

- Deuterium temperature typically lower at top of pedestal
 - Code or physics?
- T_{perp} > T_{para} in outboard steep gradient region
 - Opposite for inboard
- SOL temperatures different than carbon
 - Large, but not soaring

 ψ_{N}

Strong In-Out Asymmetry in GC Deuterium Density due to Orbit Physics

• Inboard and outboard density inverts around separatrix

- Inside separatrix: Loss hole of trapped counter-Ip ions
- Outside separatrix: Confinement hole of passing co-lp ions
- Large ion temperatures and rotation enhance these effects
- Outstanding question: How large is E_{\parallel} ?

