

Supported by

Profiles Variations in NSTX-U and their Potential Impact on Equilibrium and Stability

Coll of Wm & Mary Columbia U CompX **General Atomics** FIU INL Johns Hopkins U LANL LLNL Lodestar MIT Lehigh U **Nova Photonics** ORNL PPPL **Princeton U** Purdue U SNI Think Tank. Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Tennessee **U** Tulsa **U** Washington **U Wisconsin** X Science LLC

Magnetoboss

12/6/2013

Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Inst for Nucl Res. Kiev loffe Inst TRINITI Chonbuk Natl U NFRI KAIST POSTECH Seoul Natl U ASIPP CIEMAT FOM Inst DIFFER ENEA. Frascati **CEA.** Cadarache **IPP, Jülich IPP, Garching** ASCR, Czech Rep

What was done...

- ISOLVER-TRANSP
 - Scale existing electron density profiles, use Z_{eff} =2 to derive ion density profiles.
 - Use Chang-Hinton model for ion transport, scale electron temperature to give a desired H_{98} or H_{ST} .
 - NUBEAM for the beam heating, torque, and current drive.
 - ISOLVER to compute self-consistent internal equilibrium
 - Run simulations long enough that the simulations reach steady state, and only use the steady state part of the solution.
- Stand-alone ISOLVER
 - Used input pressure and current (ff') profiles from various NSTX shots.
 - Range of shots taken to give a wide range in I_{i} .
 - Auto-generate thousands of equilibria with different shapes to look for trends in the PF requirements.

For Relaxed Scenarios, the Thermal Pressure Peaking Strongly Impacts the Equilibrium Parameters

- Concerns: n=0 stability and control (VDE, boundary) and n=1 (core kink/tearing)
- Regardless of the target, too much thermal pressure peaking will drive l_i too high.
 - And values above 2.3 will probably be unacceptable for n=0 (next slide)
 - (note, I_i reaches approximate steady state faster than q_{min}).
- When pushing to higher I_N (or lower q_{95}), broader thermal profiles will allow the final q_{min} to equilibrate above 1.

Vertical Stability May Provide Limitations on Global Stability With Narrower Profiles

Rules For NBCD...

- Call the sources by the tangency radius
 - 50 cm: old source C
 - 60 cm: old source B
 - 70 cm: old source A
 - New beams at 110 cm, 120 cm, 130 cm
- Highest core NBCD efficiency:
 110 cm, 120 cm
- Highest mid-radius NBCD efficiency:
 130 cm
- Lowest total NBCD efficiency: 50 cm
 - Then 60 cm, then 70 cm
- Want to maximize NBCD?
 - Use 110 cm, 120 cm, 130 cm
 - But will be dominant in the core.
- Want to minimize NBCD?
 - use 50 cm, 60 cm
- Want to raise q_{min} with 4 sources?
 use 50, 60, 70, 130
- Want to lower q_{min} with 4 sources?
 - use 60, 70, 110, 120

At B_T=0.75 T, Significant Variation in the Current Profile May be Possible: f_{GW}=0.7

4 Source Combinations at Fixed Current

All: E_{inj} =90 kV, P_{inj} =8.4 MW, B_T =0.75 T, I_P =800 kA, f_{GW} =0.72, $H_{98y,2}$ =1 R_{tan} =[50,60, 70, 130] cm, q_{min} =1.77, f_{NI} =0.85, I_i =0.49 R_{tan} =[50,60, 120,130] cm, q_{min} =1.46, f_{NI} =0.89, I_i =0.53 R_{tan} =[60,70, 110,120] cm, q_{min} =0.79, f_{NI} =0.93, I_i =0.55 R_{tan} =[70,110,120,130] cm, q_{min} =1.00, f_{NI} =0.99, I_i =0.58 4 Source Combinations at 100% NI Fraction

$$\begin{split} R_{tan} = & [60, 70, \, 110, 120] \text{ cm}, \, I_p = & 765 \text{ kA}, \, \, q_{min} = & 0.68, \, I_i = & 0.55 \\ R_{tan} = & [70, 110, 120, 130] \text{ cm}, \, I_p = & 775 \text{ kA}, \, \, q_{min} = & 0.93, \, I_i = & 0.59 \end{split}$$

At B_T=0.75 T, Significant Variation in the Current Profile May be Possible: Varying f_{GW}

4 Source Combinations at Fixed Current

All: E_{inj} =90 kV, P_{inj} =8.4 MW, B_T =0.75 T, I_P =800 kA, f_{GW} =0.72, $H_{98y,2}$ =1 R_{tan} =[50,60, 70, 130] cm, q_{min} =1.77, f_{NI} =0.85, I_i =0.49 R_{tan} =[50,60, 120,130] cm, q_{min} =1.46, f_{NI} =0.89, I_i =0.53 R_{tan} =[60,70, 110,120] cm, q_{min} =0.79, f_{NI} =0.93, I_i =0.55 R_{tan} =[70,110,120,130] cm, q_{min} =1.00, f_{NI} =0.99, I_i =0.58 4 Source Combinations at Fixed Current I_P=800kA, f_{GW}=0.6

 R_{tan} =[60,70, 110,120] cm, q_{min} =0.47, f_{Ni} =0.94, l_i =0.72 R_{tan} =[70,110,120,130] cm, q_{min} =0.63, f_{Ni} =1.02, l_i =0.75

A Small Amount of Fast Ion Diffusion Might Be Good!

- Consider the nearly 100% noninductive scenario at 1.0 MA, 1.0T, and P_{inj}=12.6 MW
 - H_{98} =1.06 yields f_{NI} ~1
- Consider D_{FI}=0 &1 m²/s.
- Small fast ion diffusion results in:
 - Reduced pressure peaking, and increased q_{min}, at lower density.
 - Improved external mode stability.
 - Elimination of internal modes due to low-q.
- When combined with a conducting wall, the space is stable to all n=1 modes.
 - See MS talk for RWM stability calculations

It MAY be Possible to Generate Large Changes in the Rotation Profiles

- Details of torque profile depend on the density.
- No predictions yet, because so validated momentum transport model.
 - But note that I Goumiri has a very simple control-oriented model that could be used for prediction soon.
 f_{GW}~0.55
 f_{GW}~1

Optimized Equilibrium For Maintaining High β_T (At B_T=0.55 T, How Can the Plasma Current Be Maximized with q_{min}>1?)

Broad Profs., $(I_{P} [kA], \beta_{T} [\%], I_{I}) = (1100, 22, 0.54)$ for $H_{98y,2}=1$, (1000, 19, 0.56) for $H_{ST}=1$ Peaked Profs., $(I_{P} [kA], \beta_{T} [\%], I_{I}) = (950, 19, 0.79)$ for $H_{98y,2}=1$, (900, 18, 0.81) for $H_{ST}=1$

Key Experimental Questions

- Can we use variations in the beams to control q_{min}?
- How does the transport change with q_{min}?

- Does transport get worse as q_{min} increases at fixed q_{95} ?

- Can we use the available current drive actuators to maintain profiles consistent with vertical and n=1 stability?
- Can we systematically change the rotation shear at the midradius/edge (not pedestal) to assess changes in confinement?
- Can we optimize the NBCD, profiles, and plasma shape to maximize β_N at low-q₉₅?
 - Same as asking what is the highest β_{T} that we can operate at for longer than a few $\tau_{CR}?$

Backup

Fig. 2: Power and allowable pulse duration for the NSTX neutral beam sources, as a function of the acceleration voltage.

Fig. 26: Test of two difference neutral beam source combinations for maintaining elevated q_{min} in the high- β_T scenario optimization

