

U.S. DEPARTMENT OF

ENERGY

Waves & Energetic Particles contributions to FY2015 JRT

Coll of Wm & Marv Columbia U **CompX** General Atomics FIU INL Johns Hopkins U LANL LLNL Lodestar MIT Lehigh U Nova Photonics **Old Dominion** ORNL PPPL **Princeton U Purdue U** SNL Think Tank, Inc. UC Davis UC Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester U Tennessee U Tulsa **U** Washington **U Wisconsin** X Science LLC

M. Podestà *G. Taylor, N. Gorelenkov*

and the NSTX-U Research Team

PPPL, room B238 12/06/2013

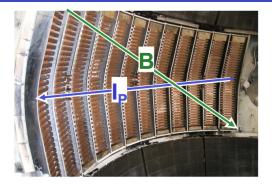
Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U U Tokyo JAEA Inst for Nucl Res. Kiev loffe Inst TRINITI Chonbuk Natl U NFRI KAIST POSTECH Seoul Natl U ASIPP CIEMAT FOM Inst DIFFER ENEA, Frascati CEA, Cadarache **IPP**, Jülich **IPP, Garching** ASCR, Czech Rep

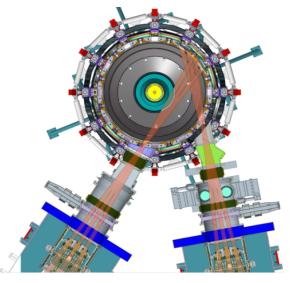
Office of

Science

WEP contributions target characterization of [new] actuators, model validation

This research will *examine a variety of heating and current drive techniques*


in order to validate theoretical models of both the *actuator performance*


and the transport and global stability response to varied heating and current drive deposition.

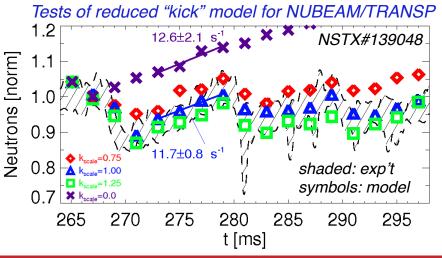
🔘 NSTX-U

NSTX-U can contribute with studies of NBI and NBI+HHFW/MHFW experiments

This research will *examine a variety of heating and current drive techniques...*

- Actuators are complementary to NBI+ECH on DIII-D
- Restrict to flat-top phase
- Characterization of 2nd NBI line part of FY15 Research Milestone R15-2
 - Specific targets for JRT: effects of NBI parameters on q profile, rotation, *AE stability
- NBI+rf scenario of interest for ITER
 - Unique (US) capability for NSTX-U
 - Look at effects on J_{NI} (through heating -> boostrap)
 - Will ITER-relevant MHFW conditions be achievable in FY15?

Present NBI


(I) NSTX-U

New 2nd NBI

Model development and validation is high priority for FY13-15; excellent progress made

This research will *examine a variety of heating and current drive techniques*

in order to validate theoretical models of both the *actuator performance ...*

- > Complementary to NBI+ECH on DIII-D
- > Characterize new NBI line (R15-2)
- > Study NBI+rf scenarios
- Validation of *classical* NUBEAM/ TRANSP foreseen (R15-2) as "baseline capability"
- New capabilities in NUBEAM/ TRANSP will enable more accurate simulations
 - "Kick" model for NUBEAM being developed
 - Improved computation of fast ion-related quantities (e.g. J_{NB}, torque) when instabilities are present

Model development and validation is high priority for FY13-15; excellent progress made

This research will *examine a variety of heating and current drive techniques*

in order to validate theoretical models of both the *actuator performance*

and the transport and global stability response to varied heating and current drive deposition.

- > Complementary to NBI+ECH on DIII-D
- > Characterize new NBI line (R15-2)
- > Study NBI+rf scenarios
- > Validation of NUBEAM/TRANSP
- > Validation of reduced models
- > Improved HHFW/MHFW modeling capabilities
- Reduced models for fast ion transport by *AEs [, kinks, NTMs] being developed/validated (R14-2)
 - Critical Gradient (1.5D-QL) model
 - "Kick" model for NUBEAM
- Improved models also being developed for HHFW/MHFW
 - Awaiting for new data for extensive validation
 - Will apply to NBI+rf scenarios
- Modeling work exploits synergy with DIII-D and collaborators

🔘 NSTX-U

Model development and validation is high priority for FY13-15; excellent progress made

This research will *examine a variety of heating and current drive techniques*

in order to validate theoretical models of both the *actuator performance*

and the transport and global stability response to varied heating and current drive deposition.

- > Complementary to NBI+ECH on DIII-D
- > Characterize new NBI line> Study NBI+rf scenarios
- > Validation of NUBEAM/TRANSP
 > Validation of reduced models
 > Improved HHFW/MHFW modeling capabilities
- > Apply reduced models for fast ion transport
- > Apply improved models for NBI +HHFW/MHFW