

Supported by

Impact of ELM filaments on divertor heat flux dynamics in NSTX and its implication for ITER

Coll of Wm & Mary Columbia U **CompX General Atomics** FIU INL Johns Hopkins U LANL LLNL Lodestar MIT Lehigh U **Nova Photonics Old Dominion** ORNL **PPPL Princeton U** Purdue U SNL Think Tank, Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Tennessee **U** Tulsa **U** Washington **U** Wisconsin X Science LLC

J-W Ahn¹

K.F. Gan², R. Maingi³, T.K. Gray¹, A.G. McLean⁴, J.M. Canik¹, J.D. Lore¹, V.A. Soukhanovskii⁴, and the NSTX Research Team

¹ORNL, ²ASIPP, ³PPPL, ⁴LLNL

NSTX Physics meeting Jan 17, 2014

Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Inst for Nucl Res. Kiev loffe Inst TRINITI Chonbuk Natl U NFRI KAIST POSTECH Seoul Natl U ASIPP CIEMAT FOM Inst DIFFER ENEA, Frascati CEA, Cadarache **IPP**, Jülich **IPP, Garching** ASCR, Czech Rep

- ELM heat flux profile characterization is important for ITER to determine requirement of ELM control system performance
- Relationship of wetted area (A_{wet}) and ELM size directly impacts peak heat flux (q_{peak})
- Larger A_{wet} allows larger total ELM energy loss (ΔW_{ELM}) to be acceptable, however uncertainty in A_{wet} remains unresolved yet
- Present prediction for ITER is based on JET/AUG data that shows rather constant q_{peak} , irrespective of ELM size, due to increased A_{wet}

🖌 OAK

RIDGE

Acceptable ELMs for various I_p for ITER are predicted

- A_{wet} increase by up to a factor of 6 has been observed in JET and ASDEX-U
- I_p is key parameter for pedestal pressure, therefore ELM energy loss

Loarte, NF 2014

OAK RIDGE

D NSTX-U

JET: many filaments during the ELM broadens heat flux profile and raise A_{wet}

 Number of striations, i.e. ELM filaments, observed on the outer divertor target increase from 3-5 to 10-15 during the ELM rise time

 A_{wet} significantly increases compared to inter-ELM value

NSTX ELMs are against king/peeling boundary with lower toroidal mode number n

- ELMs in other tokamaks have peeling-ballooning nature, i.e. n=10 - 20
- Stability analysis shows NSTX is most unstable for low n numbers (n=3 – 5)
- ELITE shows NSTX ELMs are on peeling side

Boyle, PPCF 2011

OAK RIDGE

Multiple radial heat flux profiles are averaged for data analysis

- 2-D surface temperature data from IR camera are used for heat flux calc.
- Heat flux data in (x, y) plane is re-mapped to the (r, Φ) plane and all radial heat flux profiles are combined to create an average profile

$$\overline{q}_{peak,tor} = \sum \left(q_{peak,rad} \right) / N_{rad} \qquad \overline{\lambda}_{q,tor} = \sum \left(\lambda_{q,rad} \right) / N_{rad}$$

OAK RIDGE

Peak heat flux and heat flux width are determined by total power and wetted area

OAK RIDGE

NSTX-U

Total deposited power to divertor:

$$P_{div,IR} = \int 2\pi r \bar{q}_{tor}(r) dr$$

- Wetted area $A_{wet} = P_{div,IR} / \overline{q}_{peak,tor}$
- Integral heat flux width $\overline{\lambda}_{q,tor}^{\text{int}} = P_{div,IR} / 2\pi r_{peak} \overline{q}_{peak,tor}$ $= A_{wet} / 2\pi r_{peak}$
- Total deposited energy to divertor $W_{div,IR} = \int P_{div,IR} dt$

Temporal evolution and dependence on the ELM size of P_{div,IR} and A_{wet}

ELM heat flux profile with no striation – A_{wet} decreases most significantly

• No striation seen during the whole ELM rise time

OAK RIDGE

- A_{wet} decrease is generally largest, up to ~40 50%
- q_{peak} keeps rising, A_{wet} continues to decrease during the ELM rise time

ELM heat flux profile with three striations – A_{wet} begins to rise

- * 3 4 filaments slightly raises A_{wet} but at a later stage filaments disappear and A_{wet} decreases while power goes up
- This results in rapid q_{peak} increase

OAK RIDGE

ELM heat flux profile with three striations that reduces A_{wet}

• Three filaments are observed but A_{wet} decreases in this case $\rightarrow q_{peak}$ remains rather constant after peak power deposition

OAK RIDGE

ELM heat flux profile with ten striations

Only 2- 3 filaments at initial stage of ELM rise time → A_{wet} slightly decreases and q_{peak} reaches its maximum

OAK RIDGE

D NSTX-U

 Afterwards, 9 – 10 filaments appear and broaden the profile by a factor of ~2 → q_{peak} decreases even with rising ELM power

A_{wet} increases with the number of observed striations but q_{peak} decrease not obvious for n~4 and higher

Due to the fact that ELM power increases with # of filaments

OAK RIDGE

D NSTX-U

Dependence of A_{wet} on ELM size shows both favorable and unfavorable trends depending on filament numbers

CAK RIDGE

- Type-I and type-III ELMs show similar trend:
 - A_{wet} (therefore λ_q) decreases or increases during the ELM, depending on filament structures
 - The size of change becomes bigger with the size of ELM power → A_{wet} decrease or increase becomes larger for larger ELMs
- Type-V ELMs:
 - Shows favorable trend of A_{wet} increase and the size of increase is proportional to the ELM size
- Larger ELM size gives bigger impact on expansion and contraction of A_{wet}

NSTX ELMs with 0 – 3 filaments: A_{wet} decrease leads to q_{peak} increase with increasing ELM size for type-I ELMs

- NSTX: A_{wet} decreases with ELM energy loss $\rightarrow q_{peak}$ increases
- JET [1]: A_{wet} increases with ELM energy loss $\rightarrow q_{peak}$ constant
- Both machines show A_{wet} ↓ and q_{peak} ↑ for inter-ELM profiles

NSTX ELMs with 2 – 9 filaments: A_{wet} increase leads to constant q_{peak} with increasing ELM size for type-I ELMs

This trend is similar to the observation at JET

EPED model predicts ITER ELMs to be against peeling boundary with low n-number like NSTX

- Stability of ITER pedestal is limited by current-driven kink/peeling modes due to low collisionality and shaping
- Predicted n~3 10, similar to NSTX →
 ELM profile broadening might not be as effective as JET

Snyder, NF 2011

OAK RIDGE

Conclusions

- ELM filament structure determines A_{wet} change and its mode number can be used as a good figure of merit; low n (0 – 3) general reduces A_{wet} and higher n (> 3) increases it
- The size of A_{wet} change is proportional to the size of ELM for both increase and decrease cases
- For ELMs with low mode number, A_{wet} decrease leads to q_{peak} increase with increasing ELM size. For higher mode number, A_{wet} increases and q_{peak} remains constant.
- ITER ELMs are predicted to have peeling nature, therefore low n ELMs could be dangerous

🖌 OAK

RIDGE

Back-up Slides

ELM heat flux profile with one striation - A_{wet} decreases most of the time

- A clear filament appears during the ELM rise time but it is not enough to keep A_{wet} from decreasing
- Heat flux also keeps going up while ELM power goes up

OAK RIDGE

D NSTX-U

ELM heat flux profile with five striations

- Filaments clearly increases A_{wet} and this keeps q_{peak} increase rather modest even with rapid power increase

OAK RIDGE