

Supported by

Development of a reduced model for resonant fast ion transport in TRANSP

Coll of Wm & Marv Columbia U CompX **General Atomics** FIU INL Johns Hopkins U LANL LLNL Lodestar MIT Lehigh U **Nova Photonics Old Dominion** ORNL PPPI **Princeton U** Purdue U SNL Think Tank, Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Tennessee **U** Tulsa **U** Washington **U Wisconsin** X Science LLC

M. Podestà

M. Gorelenkova, R. B. White

and many other contributors

NSTX-U Monday Meeting B238, PPPL Feb. 10, 2013

Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokvo JAEA Inst for Nucl Res. Kiev loffe Inst TRINITI **Chonbuk Natl U** NFRI KAIST POSTECH Seoul Natl U ASIPP CIEMAT FOM Inst DIFFER ENEA, Frascati CEA, Cadarache **IPP, Jülich IPP, Garching** ASCR, Czech Rep

Office of

Four models are presently implemented in TRANSP for fast ion diffusion/convection coefficients, *D_b* & *v_b*

All have diffusive/convective nature in radial coordinate; little/no phase space selectivity:

1) $D_b = k_{ADIFB} \times D_e$

2)
$$D_b = k_{ADIFB} \times D_e^{WP}$$

k_{ADIFB} : multiplier

[from http://w3.pppl.gov/~pshare/help/transp.htm]

 $D_e(x,t)$: electron particle diffusivity

 $D_e^{WP}(x,t)$: electron particle diffusivity from Ware-pinch corrected flux

3) $\Gamma_{fi} = -D_b \nabla n_b + v_b n_b$

diffusion/convection model

4) $D_b(E,t,x) = \Sigma_k \alpha_k D_k$

 $D_k(E,x,t)$: diffusivity for deeply trapped, barely trapped, cobarely passing, ...

Proposed model introduces selectivity in phase space, generalizes "diffusive transport" *ad-hoc* models

- Info on phase space dynamics is of paramount importance for Verification&Validation of codes, theory-experiment comparison
- "Fluid" (integral) quantities do not provide all information we need
 - Re-computed ("inverted") solutions for F_{nb} based on measured integral quantities (f.i. density, neutrons, E_r/rotation, NB-driven J_{nb}, ...) are not unique
- Need details on fast ion energy, pitch and their (consistent) evolution
 - E.g. *AE bursts transiently (and **selectively**) modify phase space; effects propagate during slowing-down

The new model must be "simple enough" to be included in TRANSP/NUBEAM for routine use ——> reduced model

- New 'kick model': basic ideas
- Implemented algorithm
- Initial validation against full ORBIT simulations
 Example from NSTX case w/ TAE avalanche
- Additional remarks and summary

- New 'kick model': basic ideas
- Implemented algorithm
- Initial validation against full ORBIT simulations
 Example from NSTX case w/ TAE avalanche
- Additional remarks and summary

MNSTX-U

Reduced model for fast ion transport in TRANSP - M. Podestà (PPPL, Feb. 2014)

6

'Kick Model' is based on a probability distribution *function* for particle transport

- Resonances introduce fundamental constraints on particle's trajectory in (E,P_ζ,μ)
- From Hamiltonian formulation single resonance: $\omega P_{\zeta} - nE = const. \implies \Delta P_{\zeta}/\Delta E = n/\omega$ $\omega = 2\pi f$, mode frequency *n*, toroidal mode number

For each bin in (E, P_{ζ}, μ) , steps in $\Delta E, \Delta P_{\zeta}$ are described by $p(\Delta E, \Delta P_{\zeta} | P_{\zeta}, E, \mu, A)$ which can incorporate the effects of <u>multiple</u> modes & resonances:

Correlated random walk

An analytical formulation for $p(\Delta E, \Delta P_{\xi} | P_{\xi}, E, \mu)$ could be developed – but it would be quite unpractical

In practice, will use the full 5D matrix for $p(\Delta E, \Delta P_{\mathcal{E}} | P_{\mathcal{E}}, E, \mu)$

Two main ingredients for new model:

- Probability distribution function for particle's "kicks" in $E, P_{\mathcal{E}}$
- Mode amplitude scaling factor $A_{mode}(t)$

'Transport probability' $p(\Delta E, \Delta P_{\zeta}|P_{\zeta}, E, \mu)$ can be computed through numerical codes (e.g. ORBIT) or theory

- Run ORBIT with A_{mode}=1, constant
- Simulation time long enough (~1ms, many toroidal transit times) to capture *AE effects
- Track (P_{ζ} ,E, μ) in time for each particle, steps δt_{sim} ~25-50 μ s
- Compute $\Delta E, \Delta P_{\zeta}, \Delta \mu$
- Re-bin over (P_{ζ} , E, μ) space
- > Get $p(\Delta E, \Delta P_{\xi} | P_{\xi}, E, \mu)$ for each bin

Mode amplitude can evolve on time-scales shorter than typical TRANSP/NUBEAM steps of ~5-10 ms

-1.0 -0.5 0.0 0.5

 $\Delta E [keV/ms]$

1.0

1.5

 $A_{rel}=1.00$

0.5

0.0

1.0

A_{mode} [a.u.]

Scaling factor A_{mode}(t) is obtained from measurements, observables such as neutron rate + modeling

- Best option: use experimental data (e.g. reflectometers, ECE)
- If no mode data available, A_{mode} can be estimated based on other measured quantities

Example: use measured neutron rate

- -Compute ideal modes through NOVA
- Rescale relative amplitudes from NOVA according to magnetics
- Rescale total amplitude based on computed neutron drop from ORBIT
- Scan mode amplitude w.r.t.
 experimental one, A_{mode}=1: get table

Build A_{mode}(t) from neutrons vs. time,
 table look-up

Example: A_{mode}(t) computed from measured neutron rate or Mirnov coils' signal

Get *A*(*t*) from measured neutrons+table look-up:

Compute fractional R_n
 drops vs. time

 Use table R_n vs A_{mode} to find corresponding (normalized) mode amplitude

-Comparison w/ A_{mode}(t) from _____ Mirnov coils

-Do different waveforms lead to differences in fast ion evolution? *Not on relevant time scales > 1ms*

🔘 NSTX-U

- New 'kick model': basic ideas
- Implemented algorithm
- Initial validation against full ORBIT simulations
 Example from NSTX case w/ TAE avalanche
- Additional remarks and summary

Scheme to advance fast ion variables according to transport probability in NUBEAM module of TRANSP

Scheme to advance fast ion variables according to transport probability in NUBEAM module of TRANSP

- New 'kick model': basic ideas
- Implemented algorithm
- Initial validation against full ORBIT simulations
 Example from NSTX case w/ TAE avalanche
- Additional remarks and summary

Experimental scenario for initial validation: NSTX H-mode plasma with bursts of TAE activity

🔘 NSTX-U

Reduced model for fast ion transport in TRANSP - M. Podestà (PPPL, Feb. 2014)

First tests: evolve F_{nb} from NUBEAM assuming fixed background, compare with ORBIT

Change in orbit type observed for some particles: fast ions *are* kicked around in phase space by TAEs

Only a few particles (~0.1%) are actually lost for the cases examined here; redistribution dominates

Reduced model for fast ion transport in TRANSP - M. Podestà (PPPL, Feb. 2014)

Good agreement with ORBIT is preserved when evolving F_{nb} over 5 ms, typical macro-step of NUBEAM

co-, trapped (, counter- not present in *this* input F_{nb})

Tests assuming different mode amplitudes are satisfactory, though not perfect...

Reconstruction vs. amplitude is satisfactory

Tests assuming different mode amplitudes are satisfactory, though not perfect...

• Differences ascribed to simplifications in $p(\Delta E, \Delta P_{\zeta})$ scaling with A_{mode} : shape *does* change

F_{nb} after 5ms shows fast ion redistribution, only modest losses; NB driven "current" also affected.

- Compare full ORBIT simulation with reconstructions from reduced model
- F_{nb} drops in the core, fast ions redistributed to larger radii
- Define rough proxy for NB-driven (parallel) current, I_{nb}~F_{nb} p v
 - Larger (relative) variations for $I_{\rm nb}$ than for $F_{\rm nb}$ in the core
 - > Need NUBEAM/TRANSP for more quantitative calculations of I_{nb}

Next step: use stand-alone NUBEAM and IDL scripts to simulate F_{nb} evolution for >>5 ms

Reduced model reproduces neutron evolution for nominal $A_{mode}(t)$ from neutrons, Mirnovs

- Initial comparison of model predictions w/ experimental neutron rate
- Use stand-alone version of NUBEAM, iterate with reduced model (IDL scripts)
 - Background plasma is fixed
 - Normalize exp. neutron rate to central ion density vs. time
 - Normalize all neutron rates at t=267 ms (before first burst)

Satisfactory agreement for A_{mode}(t) from neutron rate, Mirnovs

Results are sensitive to input mode amplitude; time steps must be chosen to satisfy "statistical" approach

- Typical time scales:
 - Slowing down: 15-30ms
 - Collisions: 2-5ms
 - AEs: 0.1-2ms

Results are sensitive to input mode amplitude; time steps must be chosen to satisfy "statistical" approach

[🔘] NSTX-U

Reduced model for fast ion transport in TRANSP - M. Podestà (PPPL, Feb. 2014)

Reduced model + NUBEAM computes "measurable" fast ion redistribution; NB-driven current strongly affected

 Initial tests show fast ion redistribution induced by each TAE avalanche

- Clear effects on NBdriven current, J_{nb}
 - Stronger effect than on F_{nb}
- AE effects persist on slowing down time scales
- Constant NB injection counteracts F_{nb}, J_{nb}
 depletion

- New 'kick model': basic ideas
- Implemented algorithm
- Initial validation against full ORBIT simulations
 Example from NSTX case w/ TAE avalanche
- Additional remarks and summary

The model has been recently improved to account for multiple "classes" of instabilities at a given time

Scenarios with more than one type of modes are quite common:

- This general case is of great practical interest
 - More realistic F_{nb} evolution when modes have comparable amplitude
 - Can account for different equilibria at different stages of the discharge
 - Can mock-up scenarios such as 'fast ion channeling'

> Each "class" is modeled by its $p_k(\Delta E, \Delta P_{\zeta})$, weighted by $A_{mode,k}$ - Instantaneous $p(\Delta E, \Delta P_{\zeta}) = \Sigma_k A_{mode,k} \times p_k(\Delta E, \Delta P_{\zeta})$

Can the model be used in 'predictive' mode?

- As it is, the model is OK to analyze 'real' discharges
 - Need mode structure to calculate $p(\Delta E, \Delta P_{\zeta})$, e.g. from NOVA-K and reflectometers' data + ORBIT
 - Need data (Mirnovs, neutrons, etc.) to infer A_{modes}(t)
- Two possibilities for 'predictive' runs:
 - Find reasonable guess for unstable modes (e.g. NOVA-K)
 - Explore different scenarios w/ scan of A_{modes}(t): weak *AE activity, bursts/ avalanches, etc.

or:

- Have an additional module to compute $A_{modes}(t)$ self-consistently?
- Still requires mode structure, probably estimates for γ_{drive} , γ_{damp}
- Let $A_{modes}(t)$ evolve according to F_{nb} evolution but how?
- Couple to other reduced models, e.g. 1.5D Quasi-Linear?

Summary

- Test algorithm for reduced fast ion transport model developed, being verified
 - Results compared with full ORBIT runs
 - Confirmed validity of approach for practical case
- Successful preliminary tests for NSTX case with TAE modes (avalanches)
 - Shot#139048, t~265-300 ms:H-mode avalanches
 - Strong redistribution of fast ions observed
 - Modest losses, consistent with previous detailed modeling
 - NB-driven current J_{nb} is affected, too

> Implementation in NUBEAM under way

- > Extensive Verification&Validation planned (multi-machine)
- > Identify issues, possible improvements to the model

Backup

For low-frequency *AEs with ω<<ω_{ci} such as TAEs, magnetic moment μ is conserved (...but maybe it's not)

- In this presentation, it is assumed that $\Delta \mu = 0$
- <u>However</u>: $\Delta \mu$ =0 hypothesis can break down if
 - $\rho_{\rm f}$ ~ radial width of the modes
 - $\rho_{\rm f}$ ~ scale-length of equilibrium profiles
 - ⇒ Both conditions are likely to be met in spherical tokamaks (e.g. NSTX)
- Proposed model can be generalized to cases where μ is *not* conserved

– Also important for $\omega_{\text{ci}}\text{-range}$ instabilities: GAE/CAEs

Example for single-resonance case: analytical *probability distribution function*

Single (isolated) resonances introduce fundamental constraints on particle's trajectory in (E,P_č,μ)

• From Hamiltonian formulation:

$$\omega P_{\zeta} - nE = const. \implies \Delta P_{\zeta}/\Delta E = n/\omega$$

 $\omega = 2\pi f$, mode frequency *n*, toroidal mode number

Presence of multiple modes/resonances distorts the 'ideal' (linear) relationship

Scheme to advance fast ion variables according to transport probability in NUBEAM module of TRANSP

Scheme to evolve F_{nb} takes into account (in a semiempirical way) constraints of resonant interaction

- Particle's motion is characterized by different time-scales:
 - Fast oscillation in wave field neglected
 - 'Jumps' $\Delta E_{\lambda} \Delta P_{\xi}$ around instantaneous energy, P_{ξ}
 - Slow (secular) drift from initial energy, P_{ζ}

Putting all together

At each 'macroscopic' NUBEAM step:

- I. Re-normalize bins (P_{ζ} , E, μ) based on q-profile, fields, ...
- → II. Identify 'bin' in (P_{ζ}, E, μ) for current 'particle' (i.e. orbit)
 - III. Extract steps $\sigma_{E}, \sigma_{P\zeta}$ (σ_{μ}) from multivariate p($\Delta E, \Delta P_{\zeta}, \Delta \mu$)
 - IV. Compute sign $S_{r,i}$ from $p(\Delta E, \Delta P_{\zeta})$: positive or negative kicks
 - V. Rescale steps based on $A_{modes}(t)$

VI. Advance E, P_{\zeta} (\mu):
$$= \left\{ \begin{aligned} \overline{\Delta E}_i &= S_{r,i} \times A_{mode}(t = \overline{t}) \times \sigma_{E,i} \\ \implies E_i &= E_i + \overline{\Delta E}_i \end{aligned} \right\}$$

VII. Advance particle's trajectory in phase space for next stepVIII. Compute slowing down, scattering (NUBEAM)

where steps II-VII are divided in sub-steps for each particle

Required input, e.g. through 'Ufiles': scaling factor ("mode amplitude") A_{mode} , probability $p(\Delta E, \Delta P_{z})$

Loop over particles

Discrete bins in (P_ζ,E,μ) can contain both *resonant* and *non-resonant* particles

 'Non-resonant' particles
 have small fluctuations around initial (E, P_ζ)

- 'Resonant' particles can — experience large ΔE , ΔP_{ζ} variations
- To keep track of particle's class:
 - Sample steps $\sigma_{\text{E}},\,\sigma_{\text{P}\zeta}$ at first step only
 - This mimic the "correlated random walk" experienced by the particles
 - Exception: particle move to a different bin -> re-sample

 $p(\Delta E, \Delta P_{\xi}|P_{\xi}, E, \mu)$ can be skewed to positive/negative $\Delta E, \Delta P_{\xi}$, causing overall "drift" of $F_{nb}(P_{\xi}, E, \mu)$

- Introduce 'random sign' for *i*-th step in MC procedure, S_{r,i}
- For each particle (e.g. pair of correlated steps $\sigma_{\rm E}$, $\sigma_{\rm P\zeta}$), calculate $S_{r,i}$ from probability of positive vs. negative steps
 - From $p(\Delta E, \Delta P_{\zeta})$ compute

$$p_{+} \doteq p(\sigma_{E,i}, \sigma_{P_{\zeta},i}) \quad ; \quad p_{-} \doteq p(-\sigma_{E,i}, -\sigma_{P_{\zeta},i})$$

 \mathbf{n}

- Then define f_{sign}:

$$f_{sign} = \frac{p_+}{p_+ + p_-}$$

- Finally, use $0 < f_{sign} < 1$ to bias random extraction of $S_{r,i} = +1, -1$

Example: evolving F_{nb} over 270 μ s in 5 sub-steps

Reconstruction works for different classes: co-, counter-, trapped

black: ORBIT

red: Model

🔘 NSTX-U

Reconstruction works at different sub-steps

black: ORBIT red: Model

