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LHCD on Alcator C-Mod: Uniquely at ITER density,
frequency and field.

s B.=3-8T (ITER: 5T)
o n,=0.5-5x10%"m3 (ITER: 0.5-1x10%°m"3)

» 4.6 GHz (ITER: 5 GHz) P, ;e = 2.5MW Asymmetric
» Variable phasing: n=1.5-3 (ITER~ 2) fast electrons
» 16 column launcher couples ~ TMW (current drive)

» Upto 1slong pulse (~ 5 x Tg)
» Completely non-inductive current drive demonstrated

» Creation of Reversed-shear profiles (q, ~ 2) with !
transport barriers 3V,

v

A tool to study current drive physics, benchmark LHCD codes and
produce targets for transport and MHD studies
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0-D measurements show a decrease in current drive
efficiency at increased density.

» LHCD efficiency:

n=nd, Ro/P y =2.0 — 3.0x10'° A/Wm? confirmed at low density (< 0.5x 102°m-3)
[P.T. Bonoli, POP 2007]

» However,anomalous large drop in efficiency as density is raised n_~ 0.7x10%° m-3
» Smaller change in loop voltage than expected, loss of Hard X-ray emission
s Has since been observed in other experiments

_Loop voltage
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[ O. Meneghini 2012]
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Various explanations put forward for this loss, still
an unresolved question.

» Ray tracing simulations show the LH
wave makes multiple passes
through plasma at high density

» Spends more time in edge
region

» Possible things that could go wrong:

» Parametric decay instability
» Collisional absorption in SOL

» Full-wave effects (interference,
diffraction)

» Simulation results with collisional
absorption and full-wave effects
match 0-D hard X-ray counts

What about 1-D profiles?
- Use MSE
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GENRAY/CQL3D simulations with SOL
[G. Wallace NF 2010]
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A caveat: Using MSE in this study was difficult for
two important reasons.

1) MSE polarization angle response drifts on the serveral minute time scale
» Extensive tests show no drift within a shot
» Calibration technique using reconstructions from a reference Ohmic portion of shot
» Requires nearly the same target discharge and dedicated portions of the discharge

—
1000 LH net power [kW]

500
0 |
2
()] P .
Loop voltage [V]I
o0 05 1.0 1.5 2.0
Time [s]
Use KEFIT during Ohmic Apply calibration to measure
portion to calibrate MSE changes in current profile

2) Large polarized background limits study to relative low density, quiescent plasmas.
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Dedicated experiment to document LH current
profiles as a function of density for the first time.

Density scan without significant
—temperature change
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MSE measurements of current profile show off axis
current drive disappears as density is raised.

<J.>
[MA/m?] | | | | Increasing density:
» Loss of off-axis current drive around
15 i p=0.7
s Moves outward
s More current on-axis (Ohmic)
Fraction of | in off-axis region
06 —_—
off-axis region
04F -
n, [10° m?] increasing density r _Ohmic _ _ _ _ _®——x _ ]
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Measurements show qualitatively disagreement
with GENRAY/CQL3D with SOL absorption.

<Jtor>
MA/M]———— T 7 T
15 Measurement —
| — Simulation J

o

15

Increasing density

0.0 0.25

~0.75

1.0

Discharges simulated with GENRAY/CQL3D
with collisional absorption in SOL:

s Atlow density the simulations indicate
current drive at p=0.5
» Measurements show it further out.
» Simulations under predict the
central current density

» Asthe density is increased both
simulations and measurements show the
current moves outward

» Simulation drastically over predicts
the amount of off-axis current

s At high density the simulations still show
off axis current drive
s Measurements show nearly Ohmic
profile
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Outline of talk

e Recent results with LHCD on C-Mod enabled by MSE

e Challenges for MSE in next-step devices
 Andin C-Mod for similar reasons

 MSE polarized background subtraction
e Everything is polarized!

e (C-Mod’s experience with MSE in-situ calibration

e Conclusions
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A reminder of how a MSE-LP system works.

1. Neutral beam emits 2. Periscope optics collect and 3. PEMs encode
polarized MSE light transfer polarized light out of polarization in )
— " " vacuum chamber frequency domain 4. Fibers transfer

@ modulated light
L to remote
/ detectors

/

AAA R AAAA

MSE Pi, Polarized perp. E

656 658 660 662

Wavelength [nm] .
\ 5. Spectral filter selects

\ one multiplet

|

/ 2

/ AL
/ C——3
1k
2E
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-6 Pitch angle MSE . . .
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8 Wavelength [nm]
4 Jtor
o | [MA/m’]
4| Safety factor 6. Filtered light
2 detected and
0 ] DAQ digitized
070 075 080 085 09
8. Polarization angle used as an internal 7. Polarization demodulated
constraint in magnetic reconstructions using digital lockin
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MSE-LP planned for control on next-step devices but
there are challenges.

1. Neutral beam emits 2. Periscope optics collect and Next step devices will:
polarized MSE light transfer polarized light out of e Have harsher measurement

vacuum chamber o
conditions
» Have less diagnostic access
e Have a lower appetite for risk
* Require better diagnostic data
S 3 * Demand high diagnostic
Wavelength - < availability

Al Aadp

MSE Pi, Polarized perp. E

Two big problems are foreseen for next-step MSE-LP systems

1. The beam is no longer the brightest thing in the view
* Poor beam penetration with long sightlines through dense plasma
* Many of other sources of light

2. The polarization preserving periscope is complicated

* |ts polarization properties will change over time due to erosion and deposition
on the first mirror

 Won't be able to calibrate using plasmas and beam-into gas as regularly as we'd
like, if at all

C-Mod has tackled versions of these two problems out of necessity
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C-Mod MSE: weak beam, high density, no view dump,
complicated optics, in a harsh environment.

MSE external ~MSE internal
perisc-:::ple periscope

ICRF antennas
in line of sight—"

/

Alcator C-Mod:
Shiny metal PFCs, high power densities Complicated optics, ICRF view dump
High field: 200g’s during disruptions

Cryogenic magnets: Large thermal swings (>40C/min) and large thermal gradients
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Weak beam and strong background leads to poor polarized

signal/background ratios.

* MSE beam signal is typically same order (or less) than the total plasma emission
* MSE system observes a weak diagnostic neutral beam
 C-Mod’s high density (A, up to 2x 10%° m3) plasmas are very bright

* System collects substantial polarized background light

. Typical C-Mod MSE signals
Simulated spectrum
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9 HL 02} i
5 2 QN |
-‘2\ -Beam-ion
§ X Beamn
j= Impurity line ool o
1L Visible emission i ] _
Brem. 0.02 Polarized light -
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Polarized background is a dominate cause of polarization
angle uncertainty on C-Mod.

Error in polarization angle due to background subtraction

* Not limited by photon statistics

1.0 Bo . " N YR Tybical C-Mod operatine
. . : A . Yo Typical C-Mod operating 3
e Similar issues on JET, Tore Supra, JT-60U @ i \0'\‘1 X N2 space using time ]
R 1] 1] S, RATH N \\\ \\\ interpolation across
2 N \'\7\ \\\ N o > _ 100ms beam blips
Q Q Q g \/3:0_0 \\ \\ \\\ \\\
= —_ c \QS\ \\ \\ N N
U U U -§ Lo SO0 O 4 N
N = N N N N AN =
1V Jgeam LV IMeasured -V-Background g R SN
a A P N N N \\ \\
) ./ . E \\\\O.QZ \\\ \\\ \\\ \\ \\
Need to estimate, typically use time- z T SN N
. . . i \\ N N N
interpolation across beam blips. 8 S o o . NN
8 \\ \\ \\ \\
5 0.1 b \\ N N N |
UMeasured—UBackground F AN
tan(ZHBeam) - g [ P | . N VP |
QMeasured—@Background | 10
Polarized signal to polarized background (SB)
e —— I TS DIII-D, TFTR
2 2 _ 2 2 ’ d
How well you Ccan f — Q°+U actual Q°+U estimated NSTX, MAST
Subtract the background: vQ*+uz . )

* Have only modest control over polarized signal to background (SB)
Need a better estimate of the background Stokes vector than beam blip interpolation
- Undertake a comprehensive study of polarized light in the tokamak
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Light is substantially polarized upon reflection from
‘view dump’

Linearly polariz

—

[

edr

* Developed a polarization sensitive camera to image light

reflected from ICRF antenna :
 Reflected light is complexly and highly polarized

e Polarization angle depends on location of source

e Any light in the tokamak can be reflected into the MSE
sightline, becoming partially polarized

I

A

B

[ ]

Total light reflected from antenna

Polarization
camera at MSE
location

Unpolarized }
” light source

ICRF antennas

eflected light

“
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Three primary sources of background light identified.
And they likely get worse on next step devices.

Visible Bremsstrahlung
* Dominates total light

* Seen on first pass and
reflection: <5% PF

* Doesn’t vary much
sightline-sightline

* Broadband
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Divertor/edge emission

e Seen mostly upon
reflection: <30% PF

e Changes very quickly
* Seen in all sightlines

e Polarization angle depends
on active divertor

e Quasi-broadband
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Glowing structures

* Seen only upon reflection:
<50% PF

e Highly sightline dependent
e Can become dominate

source of polarized
background

* Broadband
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T
[ RF power [MW]

R.T. Mumgaard

Nova Photonics/PPPL- Feb 24th 2014




The character of polarized background light severely limits
strategies for estimating it.

e Composed of multiple independent background sources changing on fast time scales
* Need real —time measurement

* Need to estimate the background polarization to high accuracy (~1-5%)
e Use same PEM technique as the MSE measurement

e Spatially complex polarized background
* Need to measure on the same sightline as MSE

* Few options for increasing polarized signal to polarized background
 Sources uncontrollable. Beam power fixed. Larger etendue doesn’t help.
* No room for dedicated view dump on C-Mod.
e Most viable PFCs in future devices won’t make good view dumps.

* Ab-inito calculation using ray tracing techniques unlikely to get polarization properties of
reflected light accurate enough for compensation
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A solution: Measure the polarization at adjacent wavelengths in
real time on the same sightline, then wavelength interpolate.

1
S Real-time MSE polarized background subtraction using
4 multi-wavelength interpolation scheme
—r T T T —r 1 r I
1 o 1 LV Ired of MSE ;
Q _|Q |Q use wavelength
U U U interpolation i -&:_ ]
Estimated 3F L 7
1V Jgeam LY IMeasured LV (1] [ T ]
background _ £ g, .
Q B z :
U > 5 ]
Vioeot mse 5 2f % L\ ‘ E
Valid if: - -olueo g 8 | \
. . r O
» Sources are quasi-continuum over wavelength |
range of interpolation 't ;
» Polarization mechanism is weakly wavelength [ Measure polarization of impurity- '
[ free MSE-adjacent wavelengths
dependent ,
Interpolate Stokes parameters to estimate
Advantages: of MSEI polarized backgt;ound during bealm
» Requires infrequent beam modulation 650 655 660 665

» Can provide real-time background estimate Wavelength [nm]

» Requires no changes to the MSE upstream
optics.
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Use an interference filter based polychromator with APDs to
measure the polarization at several wavelengths.

Real-time MSE polarized background subtraction
using multi-wavelength interpolation

Edge H-alpha

650 655 660 665
Wavelength [nm]

Challenges for a MSE polychromator:
s Close spectral spacing of narrow bandpass « Tune the filter bandpasses shot-shot
filters requires small AOI » Accommodate a large etendue
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Single sightline system constructed and tested last campaign

on C-Mod.

« 4 wavelength channels
- High etendue (9mm?2sr) and transmission (86%-70%)
«  Acceptable filter performance with 3deg tilt
«  Easy to manufacture and align
«  Machine independent

Polychromator filters

25 T —
“ los
20}
£15 5
> k%
O c
10 J \ 2
Tune with
oven
0.5
0.0 P T 0.0
645 650 655 660 665
Wavelength [nm]
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Polarization at adjacent wavelengths highly correlated
even as background changes significantly.

Filter placement [ Total iight 0]
| -

—L-H transition |

[ Polarized light
[ (Q2+U2) 12
- = 0.005

J

645 650 655 660 665
Wavelength [nm]

___ —_—— —— — ]

0.000 |
0.000 |

Polarization of the different spectral
regions agree
~0.005 |
» Follows the transients well across entire
discharges i
» Even over plasma transitions when  o.000 i
contributions from different i
sources are changing —ooos b ]
» Agreement near the photon statistic
limit
s Resultindependent of MSE sightline
» Works over large wavelength range

|
|
|
|
|
|
|
|
|

0.50 0.75 1.00 1.25 1.50
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System performed 5x better, 10x better at high densities
and allows continuous beam operation.

Wavelength interpolation

excellentat high densities Wavelength interpolation allows continuous
Time interpolation beam operation
Wavelength interpolation 05 T T T 1 I
1'00:'°:”'””'f””'””'””'””'””: L Time interpolation

[ Wavelength interpolatiop

o
~
e

Relative error (f)
in polarized background estimation
o
o
_Shot ayera%ed relative error (f)
in polarized background estimation

' 01 F 4
: ; : Lot ¥ . . 0, o r / 10 H-mode shots
et S --._ e \.. . .’. 4' 0‘." - .0 E : ]
0.01 LSy o RS IR RO N :

1015 56 55 ‘ A

i 1 20 -3

Line averaged density [10%° m™] 0.00 p— — il

100ms beam length Beam length [s]

» No effort made in wavelength interpolation system to minimize noise
» Use wider bandpass, higher transmission filters to decrease sampling noise
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System also allows for simultaneous measurement of
multiple MSE lines.

Polychromator allows for many measurements inside
and around the MSE spectrum

471 I L 0_4_Totallight[V] -

[ 0.5s long beam pulse MSE pi
N A 00 : -. 1121002023 |
% 'E _v \ ; 0.03 - Polarized light Stokes vectors match -
a2 L § L\ b > . I other wavelengths
g @ £ I between pulses ]
i - [ |
- Measure multiple regions within the MSE 0.03 [ Q 3
spectrum ] i T
25:0....6;5....6;0....6;5.: 000 R ~]
Wavelength [nm] [ L/"‘"WJ ]
» Can increase signal substantially 003 . . . ]
= Allows for checks of: 00051 u ]
» Atqmlc !ohy5|cs 0.000 [ _
» Calibration : :
~0.005 | .
Future upgrade: Convert all sightlines to 0.00 0.50 1.00 1.50 2.00

Time [s]

polarization polychromators
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Observation: the polarization diagnostic response drifts
shot-to-shot on C-Mod.

Drift in polarization angles observing the beam in identical plasmas

1.5 T T T
[ Cha'nge in Polalrization an_clgle [deg] ' '
1.0F -
[ "‘"_'_;\-‘4‘.; ]
- L - \ o
osf d NI
[ le
d oof Ji
1~
18
_osf 1z
13
- [ ] ’I'I’
shot5 { —10f choo 1
shot 27 . ref to shot 5 fl,
-2 M B Ly -1.5 1 . 1 ) 1 . 1 . 1
0.70 . 0.80 0.90 10am noon 2pm 4pm 6pm
Major radius [m] Time

* Use identical shots to judge reproducibility
* Polarization angle drifts ~1° shot-to-shot across runday
» Channel dependent (though smoothly)
* Not repeatable runday-to-runday
* Changes in circular polarization also apparent

R.T. Mumgaard Nova Photonics/PPPL- Feb 24t 2014 28/37



Stress-birefringence is the primary cause of drift. Attempts
to stabilize the harsh thermal environment undertaken.

 System’s many transmissive optics undergo large thermal
gradients

* Causes stress-induced birefringence, rotating polarization
» Reproduced during maintenance periods by heating optics

* Thermal isolation of components alleviated problem but didn’t
eliminate it

Heating optics causes stress induced birefringence
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MSE priscope covered with radiative heat shield

L I
_1:— | T ° .
| Problem analogous to mirror erosion and
I

-2 ha 15 deposition in next-step devices.
VW}1eateron cho 12
N I Try in-situ calibration on C-Mod.

Time since heater start [min]
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Intershot calibration system (ISC) was developed: Input
known polarizations into the diagnostic objective lens.

* 4 wire grid polarizers (WGP) with known
absolute angles are rotated in front of the
objective lens within seconds of a shot

* WGP are illuminated using a backlighting
diffuser and fiber inputs

 System rotates on high precision bushings
* Mechanically aligned to <0.05°

# 4 -
)

i

N :

TR
£ Tﬂ o T ¥

Calibration WGP Backlight
system/shutter diffuser

L

Fibers illuminate backlight
diffuser from side like a LCD
screen
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System quickly inputs 4 polarization angles immediately
following a discharge, allowing interpolation.

 Actuated using cable-in-conduit system ISC Polarization Angles

immediately following every shot gg

T
|

» Backscatter used as a feedback sensor to
determine when system is properly aligned

O
o
T
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0
o
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[~ Typical polarizationi
|_ angles in plasmas
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(0]
o

oN
T
1

Polarization angle in MSE frame [deg]
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I
|
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Major R [cm]

(o))
(9

* Measurement of the 4 WGPs allows the plasma measurements to be corrected
 System is repeatable to <0.05°

* >6,500 cycles in C-Mod to date

* >18,000 cycles in vacuum during engineering phase
 Allows checks of pump-down stress, PEM stability, Faraday rotation, lens heating etc.
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System tracks the diagnostic drift across the entire

Heat shield protects 100 Invessel Temps [C] N\L\ ka/\/ @ |

optics from pIasma 50 : :32:2:?53 mount R :

50 & (b) _;

...but VW ratchets 0 E-VW Temp [C] T ——", 2

down in temp 3 W E

50 :_Temp diff across VW [C] (©) _:

...developing!arge g W _,_.M\g

thermal gradients 0 : . . . | : . . . . =
0.5 |—Circular polarization Channel 0 (core) (d)

...becomes
birefringent

... changing the
polarization angle

runday and campaign revealing trends.

MSE Thermal and Polarization Response Over a Run Day
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But... The first implementation didn’t track the “right”
diagnostic drift.

» Use identical plasmas to judge diagnostic drift via beam observations
o Compare to that inferred from the ISC
 Quantitative and qualitatively different!

Diagnostic drift measured using beam Diagnostic drift measured using ISC
1. 1.0
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o
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o
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Determined the problem:
Diagnostic response is extremely ray dependent.

e Discrepancy reproduced during
maintenance period

e Further tests done with ray-tracing source

///, * Ray strikes a different portion of the
___ Birefringence is highly ray dependent lens with a different stress state
6op | VWIe « Different polarization aberration
a0t » Sightline calibration a weighted average
20¢ of all the rays

05t  Circular polarizatior; fraction [-]

Sggj';ig\‘,’g‘ltes;‘ Thus a proper calibration source must
match beam illumination (ie uniform)

 Probably important for next-step
systems

e Non-uniform first mirror
erosion/deposition

3
Time since heater start [hrs]
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Rebuilt the ISC with uniform illumination.
Bench trials successful, awaiting confirmation in-situ.

ISC uniformity prior to rebuild Rebuilt ISC tracks properly tracks changes in the diagnostic
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ISC uniformity after rebuild ,f Change in angle [deg] ;
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o B 1F '.
@ E | 5
EE i W ]
go] s N ]
S¢ OF .
m G F 1
£ | =
S a3 Chos, 10deg T
£ 3 ®
0 2 10 12

. 4. 6 8
Time since heater start [hrs]

* Care taken to make ISC source uniform during rebuild
* ISC now tracks birefringence imposed during maintenance periods
» Comparison with beam-into plasmas soon
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Outline of talk

e Recent results with LHCD on C-Mod enabled by MSE

e Challenges for MSE in next-step devices
e And in C-Mod for similar reasons

 MSE polarized background subtraction
e (C-Mod’s experience with MSE in-situ calibration

e Conclusions
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Talk summary

s MSE system on C-Mod is operation and making physics measurements

s LHCD current profile measured for the first time in the density regime where we observe
a loss of current drive

s Ray tracing simulations do not reproduce the observed trends

s These measurements were challenging due to calibration drift and background
subtraction

s We expect to encounter polarized background and calibration drift in next-step MSE-LP
systems

» Background polarization mechanism and sources identified
» Broadband nature allows them to be wavelength interpolated

» Polychromatic fielded, improves situation by 5x-10x in regime where required

s Developed in-situ calibration system to correct for drift from birefringence
s Source uniformity important due to ray-dependence in polarization aberrations

» Awaiting final word with beam-into-plasma
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