Update: Multichannel Transport Studies on Alcator C-Mod

A.E. White¹, N. T. Howard², C. Sung¹, C. Holland³, J. Rice¹, C. Gao¹, M. Greenwald¹, and J. Candy⁴

¹ MIT Plasma Science and Fusion Center Cambridge, MA 02139

² ORISE Postdoctoral Fellow (UCSD-MIT)

³ UCSD, San Diego, CA, 92093

⁴ General Atomics, San Diego, CA 92121

Multichannel transport studies look for correlations among heat, particle and momentum channels

- Plasmas with peaked & hollow rotation profiles
 - Change of rotation not tracked by a linear ITG/TEM transition
 - Low power RF heated L-modes (White POP 2013)
 - SOC/LOC Ohmic plasmas (Sung PPCF 2013)
 - No DIII-D type transport shortfall
 - Ohmic plasmas (Sung, POP, in progress)
 - L-mode plasmas (Howard POP 2013)
 - Q_i and impurity D&V can be matched by GYRO, but Q_e is underpredicted in these low power L-mode plasmas (Howard POP 2013)
- Fixing the electron heat flux underprediction at C-Mod
 - Realistic mass ($\mu = 60$), multiscale ($k_{\theta}\rho_s < 48$) sims needed to match experimental Q_e in the low power L-mode plasmas_(Howard PRL submitted)
 - In contrast, Q_e can be matched in high power L-modes using standard Realistic mass ($\mu = 60$), ion-scale ($k_0 \rho_s < 1.0$) low-k GYRO simulations (Howard POP 2013)

Ohmic plasmas with peaked & hollow rotation profiles

LOC / SOC Ohmic plasmas exhibit rotation reversals; Temperature fluctuations lower in SOC than in LOC

LOC / SOC Ohmic plasmas exhibit rotation reversals; T_e/T_i and collisionality are different

- Collisionality is different outside its uncertainty at r/a~0.85
- v_e*=0.67 (LOC), 0.93 (SOC)

LOC / SOC Ohmic plasmas exhibit rotation reversals; GYRO can match Q_i in both plasmas; under in Q_e

L-mode plasmas with peaked & hollow rotation profiles

Low power L-modes (1 MW ICRF) differ in <n_e> by 20%, But one has peaked (blue), one has hollow (green) rotation

GYRO Results

 No linear TEM/ITG transition between peaked/hollow shots

Nonlinear scans of a/L_{Ti} show no change in the ITG critical gradient between the two shots

GYRO Results

- No linear TEM/ITG transition between peaked/hollow shots
- Simulated heat fluxes in nonlinear simulations respond to ITG drive not TEM drives in both shots
- No change in ITG Nonlinear critical gradient between the shots

In low power L-modes, "standard" low-k GYRO simulations can match Q_i and impurity particle flux regardless of rotation profile

A. White POP 2013, Howard PPCF submitted

In low power L-modes, "standard" low-k GYRO simulations can match Q_i and impurity particle flux. Q_e is underpredicted

- Low-k, k_θρ_s <1.3, nonlinear GYRO simulations underpredict electron heat transport
- Problem with Q_e underprediction happens in both the peaked and hollow rotation shots
- But Q_e underprediction is not universal in C-Mod L-mode plasmas

A. White POP 2013, Howard PPCF submitted

In contrast to the low power L-mode (blue), standard low-k GYRO simulations match Q_e in high power shot (red)

- Low-k, ES nonlinear simulations used for both shots
- In low-power shot Q_e is underpredicted
- In high power shot the "standard" GYRO simulations recover Q_i and Q_e
- No DIII-D type shortfall

Alcator C-Mod

Figure from Nathan Howard, POP, 2013

Linear stability analysis suggests that ETG is unstable at high-k in L-mode plasma where Q_e is underpredicted

- Real frequency and growth rate for the base case L-mode simulation at r/a = 0.6
- Increase of one sigma in a/L_{Te} shown in green
- Above k_θρ_s > 0.48 ETG growth rate reduced; mode is stable

New multi-scale simulations ($k_{\theta}\rho_s < 48$) using realistic mass ratio (m_i/m_e)^{1/2} = 60 can recover the experimental Q_e

- New results from Nathan Howard (ORISE post-doc) and Chris Holland (UCSD)
- Realistic mass, multiscale GYRO simulations can recover the experimental levels of Q_e in C-Mod L-mode plasmas

UCSD

Alcator

C-Mod

Multichannel transport studies look for correlations among heat, particle and momentum

- Plasmas with peaked & hollow rotation profiles
 - Change of rotation not tracked by a linear ITG/TEM transition
 - RF heated L-modes (White POP 2013)
 - SOC/LOC Ohmic plasmas (Sung PPCF 2013)
 - No DIII-D type transport shortfall
 - Ohmic plasmas (Sung, in progress)
 - L-mode plasmas (Howard POP 2013)
 - Q_i and impurity D&V can be matched by GYRO, but Q_e is underpredicted in these low power L-mode plasmas (Howard POP 2013)
- Fixing the electron heat flux underprediction at C-Mod
 - Realistic mass ($\mu = 60$), multiscale ($k_{\theta}\rho_s < 48$) sims needed match experimental Q_e in the low power L-mode plasmas_(Howard PRL submitted)
 - In contrast, Q_e can be matched in high power L-modes using standard Realistic mass (μ = 60), ion-scale ($k_{\theta}\rho_s$ < 1.0) low-k GYRO simulations (Howard POP 2013)

Future / Ongoing Work

- Provide data sets to theory and computational groups; compare peaked/hollow rotation cases to models of momentum transport
- Generate database of linear stability results for many C-Mod plasmas to better examine correlation between ITG/TEM stability and rotation reversals (Daniel Kwak, MS degree in progress)
- Compare high-Z (Ar) mid-Z (Ca) and low-Z (B) impurity transport in plasmas with peaked and hollow rotation profiles (In collab. with Matt Reinke, York)
- Use GYRO to model H-mode plasmas with rotation reversals look for unifying explanation for Ohmic, L-mode and H-mode plasmas (and why I-mode has always peaked rotation...)
- Study non-diffusive transport observed in LOC plasmas using reduced models and gyrokinetic codes (C. Gao, J. Rice *et al.* submitted to Nucl. Fusion)

Extra Slides

Comparison of high power ($P_{RF} = 3.5 \text{ MW}$) and low power ($P_{RF} = 1 \text{ MW}$) L-modes with peaked rotation profiles

Two Steady L-mode Discharges Were Performed With Different Levels of Ion Cyclotron Heating

- Probe boundary between ITG and TEM dominated plasmas with RF power scan.
- The discharges feature:
 - Unfavorable $\nabla B\,$ drift direction
 - $n_e(0) \sim 1.5 e20 m^{-3}$
 - T_e(0) ~ 2.5 and 4.2 keV
 - $-I_{p} = 0.8 \text{ MA}$
 - $\dot{P}_{icrf} = 1.0$ and 3.5 MW
 - $B_T = 5.4 T$
 - Both plasmas sawtoothing
- Stationary plasma conditions were obtained from 1.0 to 1.4 seconds
 - Blue shaded period was used for profile / transport analysis

Gyrokinetic Simulations Were Performed to Understand the Turbulence and Investigate the Shortfall

- A significant reduction in the ITG drive term, a/L_{Ti} is observed
 - All other drive terms ~ fixed
- [•] The gyrokinetic code, GYRO was used:
 - Linear stability analysis
- Local, nonlinear gyrokinetic simulations:
 - Experimental profiles (n_e,T_e,T_i, V_{rot}, etc.) used as input
 - Electrostatic
 - $k_{\theta}\rho_s$ up to 1.3, ion scale
 - No ETG or high-k TEM included
 - Kinetic electrons, with impurities, and collisions

A. E. White, presented at PPPL, March 17th 2014

Alcator

C-Mod

Linear Stability Analysis Suggests a Transition from ITG to TEM Turbulence Occurs Between the Low and High T_e Discharges

- Linear Stability analysis indicates that:
- The low T_e discharge is dominated by ITG low-k turbulence.
- The high T_e discharge is dominated by TEM low-k turbulence.

Linear Stability Analysis Suggests a Transition from ITG to TEM Turbulence Between the Low and High power Discharges

- Linear Stability analysis indicates that:
 - low T_e (low power) discharge is dominated by ITG low-k turbulence.
 - high T_e (high power) discharge is dominated by TEM low-k turbulence.
- These results have been confirmed by a more rigorous linear analysis.

Increased Electron Temperature Fluctuations at High $\rm T_e$ Support an ITG to TEM Transition

- ^P Local T_e/T_e measurements were made using the new Correlation Electron Cyclotron Emission (CECE) system. [See C.Sung, PPCF 2013]
 - r/a = 0.8
 - $k_{\theta}\rho_s < 0.3$
 - Measured in repeat discharges of the original low and high T_e plasmas
- ⁹ The high T_e discharge displays an increase in the T_e level at r/a = 0.8
 - CECE is sensitive to trapped electron mode dynamics.
 - Consistent with a transition from ITG to TEM turbulence.

Alcator

C-Mod

C-Mod L-mode plasmas *do not exhibit* the same transport shortfall seen at DIII-D

Low Power L-mode

- No shortfall in the ion channel
- <u>Clear shortfall</u>in the electron channel.
- High Power L-mode
- No shortfall in the ion channel
- <u>No shortfall</u> in the electron channel.

Figure from Nathan Howard, POP, 2013

Nonlinear Simulations Included Modifications of Turbulence Drive and Suppression Terms Within Experimental Error

- Local, nonlinear simulations were performed at r/a > 0.6, anticipated shortfall region
- Experimental uncertainty (dashed lines) was derived for: Q_i, Q_e, a/L_{Ti}, a/L_{Te}, a/L_n, and ExB shear
- Modification of these turbulence drive/ suppression terms (+ symbols) was allowed only within these ranges.
- Attempted to match experiment heat fluxes with simulations output (circles)

Alcator

C-Mod

GYRO Exhibits Low Electron Heat Flux for the Low T_e Discharge

- The low T_e discharge exhibits behavior similar DIII-D in the electron channel.
 - No shortfall in the ion channel
 - <u>Clear shortfall</u> in the electron channel.
 - ~ 70% under prediction relative to mean Q_e
- Modifications of drive/suppression terms within experimental uncertainties are unable to resolve the electron discrepancy.

LOC/SOC plasmas

Linear and Nonlinear simulations of LOC/SOC plasmas show no evidence of TEM/ITG transition

Local Nonlinear GYRO simulations

- Electrostatic
- Ion scale ($k_{\theta}\rho_s < \sim 1.7$)
- Kinetic electrons with e-i collisions
- Rotation / ExB effects were included
- Boron (Z=5) was used as impurity with estimated dilution (LOC : 18(±9)%, SOC : 5(±3)%)

Results

- No linear TEM/ITG transition between LOC/SOC plasmas
- Simulated heat flux (Q_i and Q_e) in Nonlinear simulations for both LOC and SOC plasmas respond to ITG drive not TEM drives
- Ion heat flux matched robustly in LOC and SOC
- Electron heat flux is robustly under-predicted in the LOC, but marginal match in SOC

Scans in nonlinear runs of input parameters (a/Ln, a/Lti, a/Ln, dilution) show that Qi can be matched, but QE remains underpredicted

- Red points are results of GYRO runs with input parameters scanned
- Electron heat flux is under-predicted in the LOC, marginal match in SOC
- Electron heat flux was **insensitive** to a/L_n and a/L_{Te} TEM drives, but Q_e did increase slightly with a/L_{Ti} ITG drive increase

Alcator

C-Mod

There is no evidence of the DIII-D type shortfall in GYRO runs for LOC/SOC plasmas (r/a ~ 0.86)

