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Motivation 

• Experimental nuclear fusion devices like ITER need to 

explore advanced operation scenarios to achieve high 

performance plasmas 

• Plasmas near operational limits can produce disruptions 

 

• Detrimental effects of disruptions to fusion devices 

• Mitigation actions 

 

• A reliable real-time disruption predictor is a pre-requisite 

to any mitigation method 

• Reliability has to be understood in terms of high success rate, 

low false alarm rate and enough anticipation time 
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Motivation 

• Machine learning methods can be used to create data-driven models to explain 
behaviours whose mathematical description from first principles is not possible 

• Example: disruption prediction 

 

• Typically, disruption predictors have been implemented as classification systems 

• The more training samples the better 

• APODIS in JET (J. Vega et al. Fus. Eng. Des. 88 (2013) 1228-1231) 

• The need of large training datasets is a drawback for ITER and DEMO 

• Predictors from scratch are a potential alternative 

• Predictors learn from the first disruption in an adaptive way 

– S. Dormido-Canto et al. Nuclear Fusion. 53 (2013) 113001 (8pp) 

– J. Vega et al. Nuclear Fusion. 54 (2014) 123001 (17pp) 

• They also need past discharges (a small fraction) to be optimized 

 

• Could disruption predictors be developed without the need of training with past 
discharges? 

• This means to learn the ’normal‘ evolution of a discharge and to trigger an alarm when 
an anomalous behaviour is detected 

• How sure are we about the fact that the anomaly detected corresponds to a disruption? 
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Outline 

• Anomaly detection concept 

 

• Disruption prediction based on anomaly detection 

and the locked mode signal 

 

• Results in JET with 2304 discharges with the ILW 

 

• Conclusions 

J. Vega et al.| 26/10/2015 | 4/18 



Anomaly detection: conceptual view 

• Objective: to identify when the sample distribution changes (in the widest sense) 

• Possible changes: distribution parameters, the distribution itself, noise amplitude, … 

 

• The aim is not to make hypothesis testing to determine the specific distributions but 

recognizing asap when the sample distribution is different 
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Diagnostic 
+ + + + 

The detection process has to recognize 
that the samples start to be ‘far’ from the 
initial cluster and, therefore, an alarm has 
to be triggered 

. . . . . . 

t0 
t0+2Dt 

t0+Dt 
t0+nDt 

t0+(n+1)Dt 

t0+(n-1)Dt 

Each particular application can define a specific mapping 

Algorithm for anomaly recognition 



Simple Predictor based on Anomaly 
Detection (SPAD): on-line setting 

• Main advantage: no data from past discharges is needed 

• A new predictor is started with each new discharge 

• Requirements 

• The delay between a true change and its detection should be minimal 

• The number of missed detections should be minimal 

• The number of false detections should be minimal 

• Data streams should be handled efficiently 

• The sequential data are read only once 
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The JET LM predictor based on 
amplitude threshold  misses the alarm 

• How sure are we about the fact that the 

anomaly detected corresponds to a 

disruption? 

• Feature selection to represent the plasma 

state is essential 

• The simplest SPAD predictor can be 

developed with a locked mode signal 

• Not basing the prediction only on an 

amplitude threshold 



SPAD implementation 

• Outlier recognition criterion 

• Data have to be processed in time windows to avoid ignoring the 

frequency domain 

• Temporal resolution 

• Time windows: 32 ms 

• Sampling rates: 1 kS/s 

• A sliding window mechanism can be used to achieve a resolution of ms 

without increasing sampling rates 

 

 

 

 

 

• In each time window, the data are compressed into two components 

by means of the Haar wavelet transform (approximation coefficients) 
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32 samples 32 samples 32 samples 32 samples 

t0 t0-31 t0+33 t0+65 t0+96 t0+64 t0+1 t0+32 

32 samples [t0-29, t0+2] 

32 samples [t0-27, t0+4] 

32 samples [t0-25, t0+6] 



Haar wavelet transform 

• A wavelet transform is a filter 

• Low pass/high pass 
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S(t) (N samples) 

Level 1 A1(t) (N/2 samples)  D1(t) (N/2 samples) 

Level 2 A2(t) (N/4 samples)  D2(t) (N/4 samples) 

Level 3 A3(t) (N/8 samples)  D3(t) (N/8 samples) 

. . . . . 



Wavelet transform 
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S(t) (4000 samples) 

A1(t) (2000 samples) D1(t) (2000 samples) 

A2(t) (1000 samples) D2(t) (1000 samples) 

Level 1 

Level 2 



Haar wavelet: approximation 
coefficients 
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Level4 

Level3 

Level2 

Level1 

16 samples 

8 samples 

4 samples 

2 samples 



SPAD implementation 

• In the non-disruptive phases of the discharges, the points in this bi-

dimensional space show a compact cluster structure 
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Scatterplots in the 
bi-dimensional space. 
Points are represented 
every 2 ms 

First outlier 
t = 57.694 s 

• The alarm has to be triggered the first time that 

a point is ‘far enough’ from the cluster center 

• The Euclidean distance does not seem to work 

• The distances defined by the Euclidean metric 

take no account of any patterns of covariance 

that exist in the data 

• A simple inspection of the cluster data shows a 

positive covariance in the data 

 



SPAD implementation 

• The metric proposed by Mahalanobis does 

adjust for covariance 

• The computation of the Mahalanobis 

distance is carried out every 2 ms through 

the wavelet transform of the latest 32 

samples of the locked mode signal 
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• Where is the distance limit to recognise X(tP) as outlier? 

• Outlier criterion 

Each ellipse is an isodistance contour 

Same Mahalanobis distance 

    
  

Mahalanobis P Mahalanobis P

Mahalanobis P

D t mean D t t
K

std D t t

 






SPAD implementation 

• In this first version K = 10 

• In future versions, K could be determined ‘on-the-fly’ 

during each running discharge 
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Disruption 

APODIS prediction 
SPAD 

JET LM predictor based on a 
threshold  misses the alarm 

K=10 

    
  

Mahalanobis P Mahalanobis P

Mahalanobis P

D t mean D t t

std D t t

 



J. Vega, R. Moreno, A. Pereira et al. “Advanced disruption predictor based on the locked mode signal: application to 
JET”. 1st EPS Conference on Plasma Diagnostics. April 14-17, 2015. Frascati, Italy 



SPAD results in JET 
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• All safe discharges and all 
unintentional disruptions in the range 
82460-87918 (all ILW experimental 
campaigns) have been considered 

• 1738 non-disruptive discharges 

• 566 unintentional disruptive 
discharges 

Data 

compression 

False 

alarms 

(%) 

Missed 

alarms 

(%) 

Tardy  

detections 

(%) 

Valid 

alarms 

(%) 

Premature 

alarms 

(%) 

2 7.13 13.43 3.53 81.45 1.59 

4 7.31 11.48 3.36 83.22 1.94 

8 7.42 11.84 3.00 83.39 1.77 

16  +18% 12.37 3.71 81.80 2.12 

Missed alarms: no alarm or alarm triggered after 
      the disruption 
Tardy detection: warning time < 10 ms 
Premature alarms: warning time > 1.5 s 
Valid alarms: 0.01 s ≤ warning time ≤ 1.5 s 

The information content in the 32 samples of the time windows can 
be compressed with the wavelet transform in 2, 4, 8 or 16 points 

tardy premature 

valid 



SPAD results by campaigns 
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Conclusions (1/2) 

• A disruption predictor based on anomaly detection has been 

developed and tested 

• ILW campaigns: C28-C34 (+2300 discharges) 

 

• The anomaly detection has been implemented within each 

discharge 

• No previous data are needed for training purposes 

• Discover anomalies through outliers 

• To be sure that the anomaly corresponds to a disruption: locked mode 

 

• It is only based on the locked mode signal 

• Simplicity 

• It requires a specific data processing and it is not based on an 

amplitude threshold 

J. Vega et al.| 26/10/2015 | 16/18 



Conclusions (2/2) 

• The computations required are fast enough to install the 

predictor under real-time requirements 

• SPAD can coexist with other predictors 

 

• SPAD outperforms both JET APODIS and the JET LM 

predictors 

• However, improvements are possible 

 

• SPAD is a predictor that uses a single signal in the time 

domain linked to physical phenomenology, which is well 

understood 

• In line with ITER requirements 
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Does this predictor work in NSTX? 
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