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Dynamics of toroidal
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Goal: Preventing instabilities and fluctuations
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- Can we prevent a dynamical system from going
unstable?

- Can we drive a dynamical system to a chosen state
and stabilize it there”

The answer is yes, using

Sensors —mm—— Actuators

N/

System
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1. Modified Hasegawa-Wakatani equations (MHW)

Suppress the transition to drift-wave induced turbulence

2. Plasma toroidal rotation

Control plasma rotation in NSTX device and NSTX-U to maintain
plasma stability for long-pulse operation.



Modeling
- Start by a simple model of the dynamics
- Apply model reduction
- Linearization

Building a linear controller for the linear
reduced order model

Connect the controller to the original nonlinear
model



MHW problem:
the modeling



- Drift waves are a particular type of instability that occur to the plasma inside the

tokamak which is spontaneously excited by large ion thermal gradients.
- Zonal flows are then produced from the shearing of the poloidal flow.

- There is a coupling between the drift wave turbulence and the zonal flow:

HW model describes evolution of denS|ty
fluctuation 72 and vorticity ¢ = V3¢ ( ¥: electrostatic
potential)
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- Zonal components must be subtracted from resistive coupling term
since they (k, = k., = 0) do not contribute to this term.
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A - Hasegawa-Wakatani equations: Model definition

- The numerical simulation of the MHW equations shows a regime where after an initial
transient, drift waves turbulence is suppressed through zonal-flow generation.




- We add an additional electrostatic potential as our control input into the
LMHW model O = Pint T Pext Pezt = Pu

- Controlled Linearized Hasegawa-Wakatani Model around the equilibrium point (0,0,0):

C _ C . aA~1 — IuA2 — o C
(n) — A(n> + Bu = (&A_l _ /{%A—l o — HA2> (n> + Bu

Distribution of the electrostatic potential Pext
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Decoupling the stable and unstable parts of the state
\Ilu, |\ s are the left unstable and stable eigenspaces

(I>u, b g are the right unstable and stable eigenspaces

1 — (C) =®,,a, + P.a,

n

By substituting into = Az + Bul then, pre-multiplying by ¥~ U~

d (a,\ (V:A®, O ay U
o) = (0™ o) (02) + (52) e



Balanced truncation applied on the stable part

Cases studied

Orriginal dim. of the
state

Reduced dim. of the
state

2 RHP 512 6
4 RHP 512 10
8 RHP 512 20

Details can be found in Goumiri et al., Phys. Plasmas, 2013
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MHW problem:
the control




Design a full state feedback controller

(For the reduced order model)

Design an observer based controller

(For the full linear model)

Compensator designed

(For the full nonlinear model)
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= dim. of reduced state

Full state feedback control n— dim. of full state

P = dim. of the input

Reduced linear model

We start by designing a controller for
the reduced order model by using
Linear Quadratic Regulators (LQR).

uw € RP

Reduced controller

Full Linear model

This controller is used combined
with a projector as the new
controller of the full linear model.

Finally, the full linear model is replaced
by the full non linear model, without :
changing the design of this new Full controller
controller.
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Observer based control

Full Linear model

Compensator

Finally, the full linear model is replaced by the

full non linear model, without changing the
design of this compensator. Ax — f(x)

SEISOI'S

p = dim. of the input
q = dim. of the output
U = Sensor noise

W = DProcess noise

We start by designing an
observer for the linearized
model by using a Kalman
filter, then we combine it
with our previously
designed controller to
obtain a compensator.
Slab of plasma studied

/

N\

We then sense 2 types of measurements: (output)

- Full density field n: ¢=(0 I)

- 4 pointwise density field n: ¢ =



Results for Modified Hasegawa-Wakatani

4 RHP eigenvalues model with full density field sensed
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Results for Modified Hasegawa-Wakatani

4 RHP eigenvalues model with 4 pointwise density sensors
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Toroidal rotation:
the modeling



The Pr. lmary components of the Upgl‘ade_' National Spherical Torus Experiment - Upgrade (NSTX-U)

New Center Column or Stack I

- The complete replacement of the center Douties cuten and megnets

field and quintuples the
duration of plasma

stack (containing the inner-leg of the toroidal
field coils, the ohmic heating solenoid...)

- The addition of a second neutral beam
iInjector aimed more tangentially.

24 NBI Present NBI

Plasma

The upgrade of NSTX machine will:

- Increase the TF (Toroidal field) capability from 0.55T to 1.0T.

- Increase the maximum plasma current from 1.3 MA to 2 MA.

- Increase auxiliary heating power.

- Increase neutral beam current drive and the ability to tailor their
deposition profiles.




Simplified Toroidal Momentum Equation

W Ow (VNN B [0 , O
(nm) (R°) = = (3—‘9 9 {a‘p/(nm)xqﬁ (R (Vp)* >@p

=+ ZTNBM (PNBI) =+ TNTV (w, 12)

Energy Equation: 5, control

Energy stored
0\A 4:
§ NBI 7,

Empirical Constant /

coming from H8 —
code

0.93 RO0.15 041 0.69 1.97 0.58 ,.0.78
T = Hogy 2 0.0562 %% BY PO By %8 i

Boyer, M. D. & al.
X¢ has to be modeled as well as the background variables
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B- Plasma rotation : NBl model For NSTX & NSTX-U

TNBIz’(ta :0) — TNBIi(t)FNBIz‘(p)
8TNBI’i T

T .
ot | TNBIZ — KNBIiPNBIi(t)
NBIg

« 6 NBl beams — Power 2MW each: Max 12MW
« Each beam can be blocked 20 times max.

e Block min duration: 10ms

. I\6/Iin duration between blocks: 10ms \
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« Same model used for NSTX & NSTX-U: Max. Current = 3kA

Tarv(t, p) = K G(p) (R?) I*(t) w(t, p)
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B- Plasma rotation : Model reduction

:Zan(t)%z(ﬂ) pn(p) = Jo(knp), n=1,...,N

Jo denotes the Bessel function of the first kind and &,, denotes the n-th root of .Jj

(onom) =0,  form#n  (f,q) = / 0 £(p) 9(p) dp
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Toroidal rotation:
the control



Controller design (LQG) for NSTX & NSTX-U:

_._)y

Controller
|
AW
—O— K Oo— [ I
ud W L u
Yd o N > f * ¥ Plant
Ld
\ j\j v
Y ° J Observer -O0— K

e Feedforward (F)
Set-point of desired profile

e inear Quadratic Regulator (K)

Minimize cost function: 7 _— h (2" Qz + u" Ru) dt
to

eLinear Quadratic Integrator (K ;)
Integrate error to remove steady-state error

¢ Anti-windup (AW)
Prevent actuator windup due to saturation

eQObserver
Predict full state based on point-wise measurements o~



Rotation profiles [rad/s|

Equilibrium
casurement , || ———— Initial shape

channels Des. shape 1
Target pt. 1

Des. shape 2

Target pt. 2
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Rotation meas. [rad/s]
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Rotation profiles
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Nonlinear model
inputs and
outputs

Rotation measurements
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Results: TRANSP model - Measured Stored thermal
energy W
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Results: TRANSP model - Coil current and Beam power
needed
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Summary

« NSTX and NSTX Upgrade devices

* Linear control tools

 Based on reduced order model

* Only few measurement points

» Strict constraints on the actuators

» Second line of three neutral beams, spatially more
extended

 No data available, 1009% model based approach

« Satisfactory Control
* Implemented in TRANSP

Work to do

» Study robustness in stability and performance
* Implementing in real machine through PCS




