Core Plasma Particle Transport Benchmark Activities in International Tokamak Physics Activity (ITPA) Integrated Operation Scenario (IOS) Group

Yong-Su Na (Deputy Chair) on behalf of ITPA IOS TG

Department of Nuclear Engineering, Seoul National University

Acknowledgement: C.E. Kessel, Dong-Hyun Na, A. Fukuyama, J. Garcia, N. Hayashi, F. Koechl, A. Polevoi, A. Wisitsorasak, X. Yuan

Outline

Integrated Operation Scenarios

- Goal of modelling activities in ITPA IOS TG
- Motivation of particle transport benchmarking
- Overview of particle transport benchmarking activity
 - Benchmarking guideline
 - Participating 1.5-D transport codes and modellers
- First results of particle transport benchmarking
- Discussion

ITPA

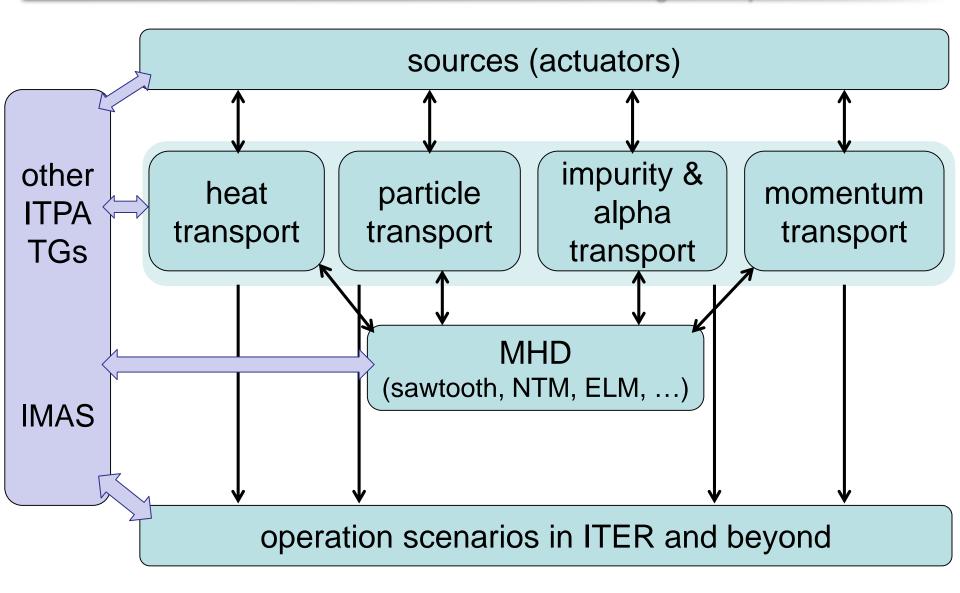
• Next-step work

Goal of modelling activities in IOS

Integrated Operation Scenarios

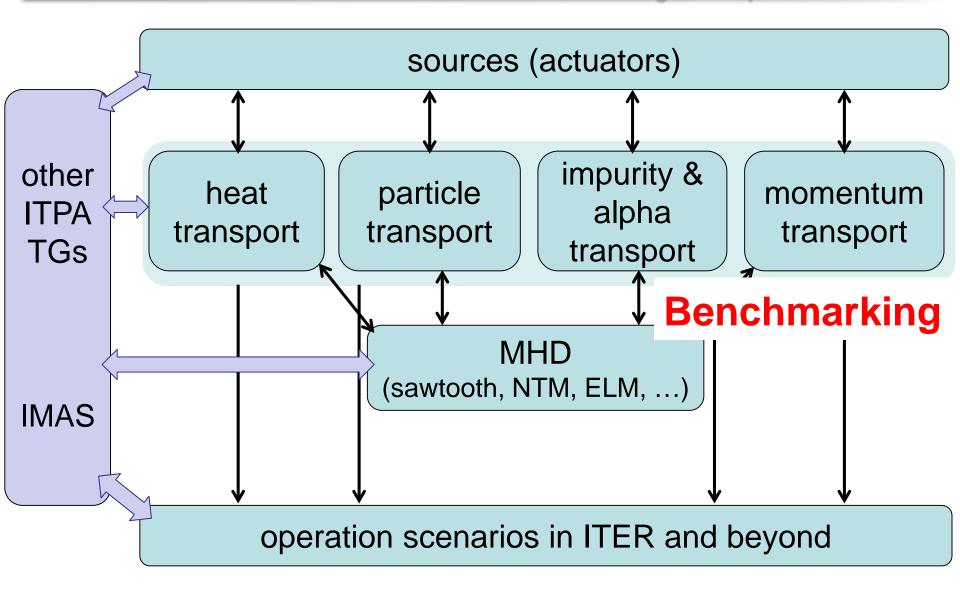
- Establish reliable integrated operation scenarios in ITER
 - Address ITER urgent issues related with IOS
 - Simulate and optimise ITER operation scenarios
 - Model and simulate integrated control for ITER
- Improve predictive capability of integrated modelling
 - Benchmark and verify existing models, modules, and codes
 - Integrate models, modules, and codes for better prediction

Short-term partially collaborative activities

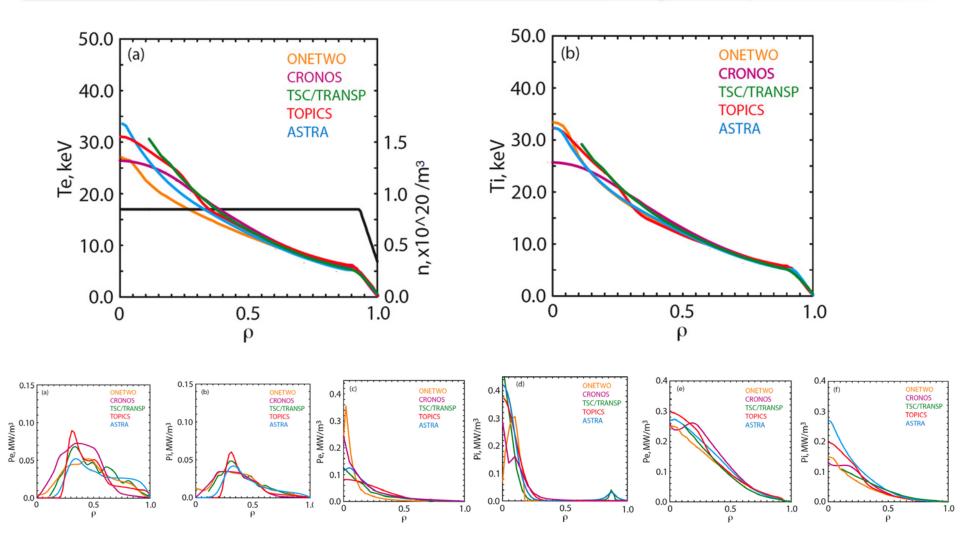

Integrated Operation Scenarios

- Establish reliable integrated operation scenarios in ITER
 - Address ITER urgent issues related with IOS
 - Development of H, He scenarios
 - Ramp-down and plasma termination modelling
 - W transport modelling

- Simulate and optimise ITER operation scenarios
- Develop integrated control schemes for ITER
 - Burn control simulation
 - Integrated control simulation with actuator sharing
- Improve predictive capability of integrated modelling
 - Benchmark and verify existing models, modules, and codes
 Bootstrap current model benchmarking
 - Integrate models, modules, and codes for better prediction
 - Pedestal modelling
 - Core-edge-SOL integrated modelling

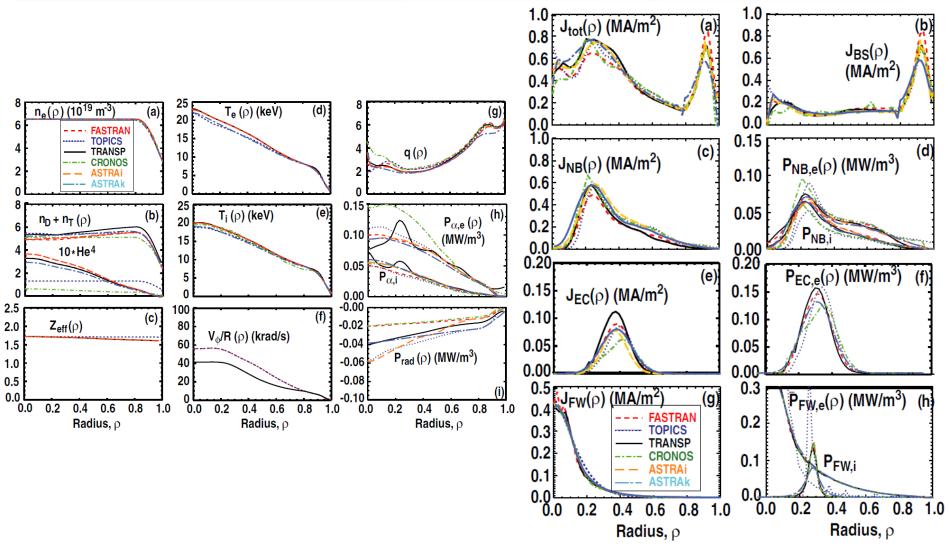

Long-term fully collaborative activities

Integrated Operation Scenarios


Long-term fully collaborative activities

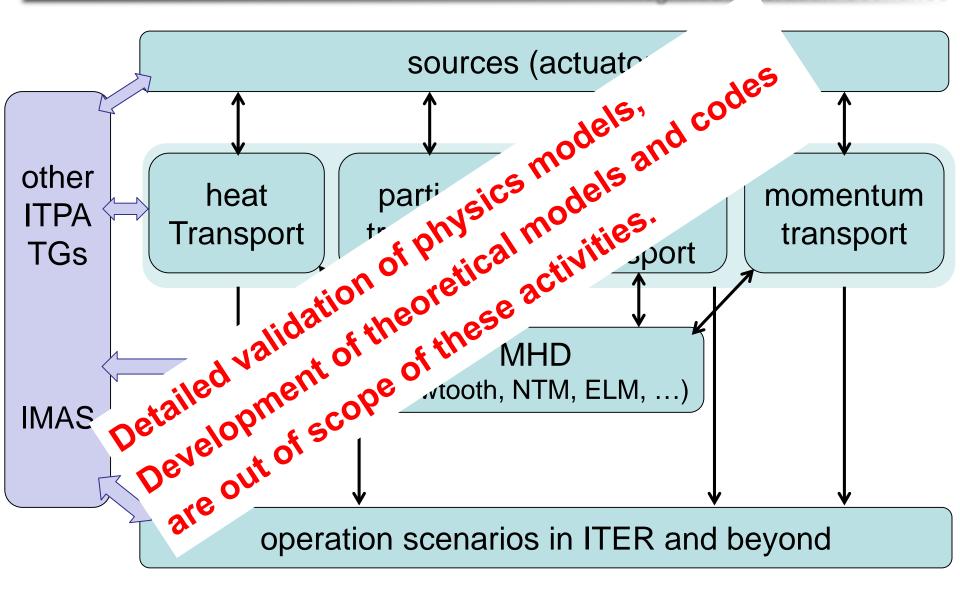
Integrated Operation Scenarios

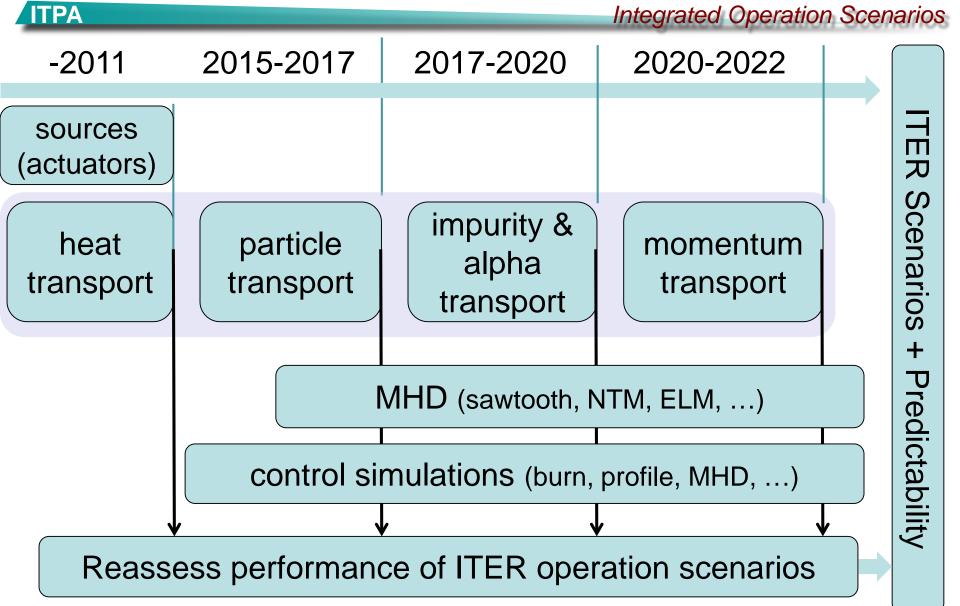
Heat transport benchmarking


Integrated Operation Scenarios

C.E. Kessel et al, NF 47 1274 (2007)

Heat transport benchmarking


Integrated Operation Scenarios


M. Murakami et al, NF 51 103006 (2011)

Long-term fully collaborative activities

Integrated Operation Scenarios

Plan for benchmarking activities

Outline

Integrated Operation Scenarios

- Goal of modelling activities in ITPA IOS TG
- Motivation of particle transport benchmarking
- Overview of particle transport benchmarking activity
 - Benchmarking guideline
 - Participating 1.5-D transport codes and modellers
- First results of particle transport benchmarking
- Discussion

ITPA

• Next-step work

Importance of particle transport in ITER prediction

Integrated Operation Scenarios

- How is the density established in L-mode and does affect the L-H transition, and ultimately controlled in flattop H-mode?
- What is the density and density profile evolution at the L-H transition which has significant implications for entering and staying in H-mode?
- How to set credible burn control strategies for the H-mode in the flattop phase which depends sensitively on the particle balance of the mixed D-T fuels, He and impurities?
- How is the density and density profile evolution during the I_p ramp-down phase and the H-L transition phase?
- How much is the particle screening effect, charge exchange, recycling, and penetration of He and fuel into the core plasma which are central to understanding the dilution and tritium burnup?
- How much is the core fueling by pellet injection?
- How is the SOL/divertor plasma and its interactions with plasma facing components which sets the boundary conditions for the core transport?

Particle transport modelling in ITER prediction

Integrated Operation Scenarios

- Ultimate goal: modelling of integrated control of
 - Core density (burn control for DT)
 - Mode of operation (L, H)
 - ELM pacing

- Divertor detachment
- Impurity accumulation
- Responsibility of ITPA TGs:
 - Core transport models (T&C)
 - Pedestal models (PED)
 - Core boundary conditions (SOL/DIV)
 - Core transport solvers + integrated modelling (IOS)
- Core transport solvers:
 - Electron/ion transport simulation
 - Core fueling by pellets (permanent/instant models)
 - Sink with ELMs (permanent/instant models)
 - Core impurity transport (including control by ELM pacing)
 - Impact of boundary conditions (from SOL/DIV transport and control)
 - Efficiency of core fueling by gas puffing (penetration through the SOL)

Status of particle transport modelling

Integrated Operation Scenarios

- Particle transport in the core plasma is often not treated regardless of its importance in integrated scenario simulations.
 - uncertainties of measurements to determine the separatrix density and the fuel sources (3-Dimentional) to validate transport models
 - complexity of multi-species impurity transport
 - complicated relationship with the SOL, divertor, and plasma facing materials

Particle transport benchmarking

Integrated Operation Scenarios

Goal

- Verify agreement among various integrated modelling codes by approximating closely the expected scenario on ITER
- Predict ITER plasmas more accurately based on knowledge accumulated from the benchmarking
- Address the critical issues of ITER

Outline

Integrated Operation Scenarios

- Goal of modelling activities in ITPA IOS TG
- Motivation of particle transport benchmarking
- Overview of particle transport benchmarking activity
 - Benchmarking guideline
 - Participating 1.5-D transport codes and modellers
- First results of particle transport benchmarking
- Discussion

ITPA

• Next-step work

Steps in benchmarking

Integrated Operation Scenarios

STEP 1: Benchmarking of particle transport solvers with prescribed transport coefficients and sources at one time point in the current flattop Purpose: to ensure agreement and understand differences among particle transport solvers

STEP 2: Benchmarking of particle sources & sinks with prescribed transport coefficients at one time point in the current flattop Purpose: to compare source & sink models

STEP 3: Sensitivity scans of transport coefficients at one time point in the current flattop Purpose: to evaluate the impact of particle transport to fusion performance

STEP 4: Benchmarking of time-evolution in whole discharge with prescribed transport coefficients and sources in time Purpose: to evaluate the impact of particle transport to scenario evolution

STEP 5: Application of physics-based transport models Purpose: to predict particle transport in ITER

Steps in benchmarking

Integrated Operation Scenarios

STEP 1: Benchmarking of particle transport solvers with prescribed transport coefficients and sources at one time point in the current flattop Purpose: to ensure agreement and understand differences among particle transport solvers

STEP 2: Benchmarking of particle sources & sinks with prescribed transport coefficients at one time point in the current flattop Purpose: to compare source & sink models

STEP 3: Sensitivity scans of transport coefficients at one time point in the current flattop Purpose: to evaluate the impact of particle transport to fusion performance

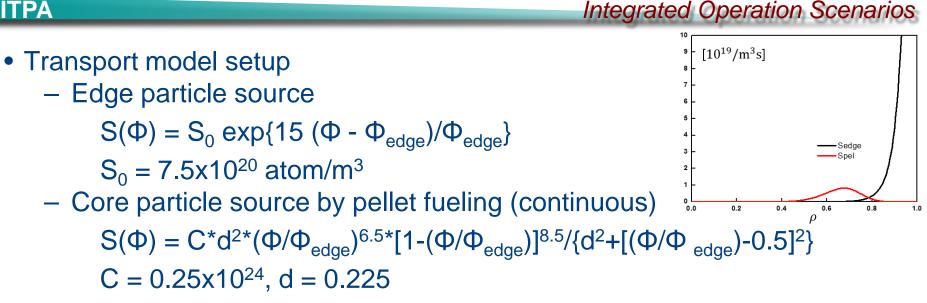
STEP 4: Benchmarking of time-evolution in whole discharge with prescribed transport coefficients and sources in time Purpose: to evaluate the impact of particle transport to scenario evolution

STEP 5: Application of physics-based transport models Purpose: to predict particle transport in ITER Integrating with heat transport!

Integrated Operation Scenarios

• Solving n_e and T_e , T_i

ITPA


- ITER baseline scenario at the plasma current flattop phase
 - $-I_{p} = 15.0$ MA, $B_{T} = 5.3$ T at R = 6.2 m
- Basic assumptions
 - $n_z = f_z n_e$, quasi-neutrality
 - Set Helium density profile as

 $n_{He}(\Phi) = n_0 [1 - (\Phi/\Phi_{edge})^2]^2 \Phi$: toroidal magnetic flux

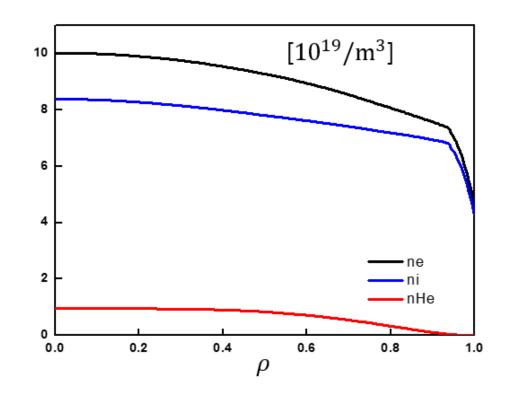
 $n_0 = 0.95 \times 10^{19} / m^3$

- Ignore NB fueling and current drive
- Zero toroidal rotation
- No sawtooth
- Plasma equilibrium: using a TSC result or approximate geometric values


R ₀ (m)	a (m)	К	δ	Z _{mag} (m)	Volume (m ³)
6.20	1.99	1.85	0.45	0.50	819.4

Pellets injected every 50 ms, so continuous source is ~ 50x smaller

- Particle transport

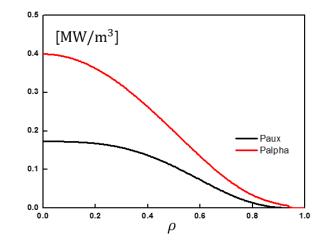

$$D(\Phi) = D_0 + D_1(\Phi/\Phi_{edge})^2 \text{ for } \Phi < \Phi_{ped}$$

 $D(\Phi) = D_2 \text{ for } \Phi \ge \Phi_{ped}$
 $R_0^* v/D = V_0^* (\Phi/\Phi_{edge})^{1/2}$
 $D_0 = 0.5 \text{ m}^2/\text{s}, D_1 = 1.0 \text{ m}^2/\text{s}, D_2 = 0.11 \text{ m}^2/\text{s}$
 $V_0 = 1.385 \text{ (positive is inward pinch)}$

Integrated Operation Scenarios

• Transport model setup

- Impurity specification
 - Be: $n_{Be}/n_e = 0.02$, profile same as electrons
 - Ar: $n_{Ar}/n_e = 0.0005$, profile same as electrons
 - W: $n_{\rm W}/n_{\rm e} = 0.0$
- Boundary condition $n_e(a) = 4.6 \times 10^{19} / m^3$



Integrated Operation Scenarios

- Transport model setup
 - Heat source

ITPA

$$\begin{split} \mathsf{P}(\Phi) &= \mathsf{P}_0[1 - (\Phi/\Phi_{edge})^{1.5}]^{3.5} \\ \text{Normalise } \mathsf{P}_0 \text{ to match } \mathsf{P}_{total} = 53.0 \text{ MW} \\ \mathsf{P}_{elec}/\mathsf{P}_{total} &= 0.7, \, \mathsf{P}_{ion}/\mathsf{P}_{total} = 0.3 \end{split}$$

Heat transport

 $\chi_{e,i}(\Phi) = \chi_0$ for $\Phi < \Phi_{ped}$ $\chi_{e,i}(\Phi) = \chi_{ped} \exp\{2.5 \left[(\Phi - \Phi_{ped}) / (\Phi_{edge} - \Phi_{ped})\right]^2\} \text{ for } \Phi \ge \Phi_{ped}$ $\chi_0 = 0.802 \text{ m}^2/\text{s}$ $[m^2/s]$ [keV] $\chi_{ped} = 0.13 \text{ m}^2/\text{s}$ 25 1.5 $\Phi_{\text{ped}}/\Phi_{\text{edge}} = 0.88$ 20 15 1.0 Boundary condition 10 0.5 Xi=Xe $T_{a}(a) = T_{i}(a) = 150 \text{ eV}$ 0.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 ρ ρ

Main plasma parameters (reference)

Integrated Operation Scenarios

β _N	2.0	n _e /n _{GW}	0.74
Τ _Ε	3.0 (including radiation)	n _e (0)	1.0x10 ²⁰ /m ³
H ₉₈	1.1 (including radiation)	<n<sub>e></n<sub>	0.85x10 ²⁰ /m ³
W _{th}	403 MJ	n _e	0.9x10 ²⁰ /m ³
T _i (0)	24.6 keV	n _e (0)/ <n<sub>e></n<sub>	1.18
T _e (0)	25.1 keV		
T _{i,ped}	4.6 keV		
T _{e,ped}	4.7 keV	<z<sub>eff></z<sub>	1.51
Ρα	106 MW	<n<sub>He>/<n<sub>e></n<sub></n<sub>	0.062
P _{line}	5.1 MW	<n<sub>DT>/<n<sub>e></n<sub></n<sub>	0.786
P _{cycl}	6.0 MW		
P _{brem}	17.1 MW		
P _{net}	135 MW		ASTRA v.6

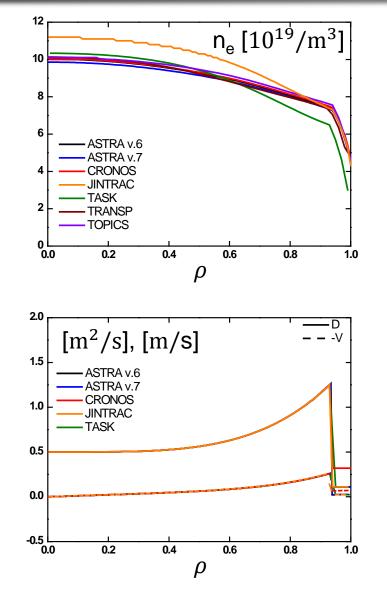
Participants of the activity

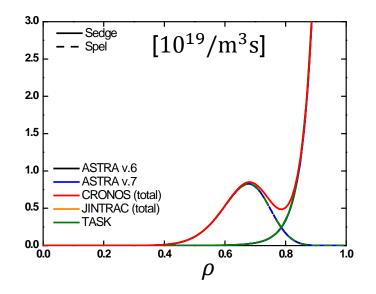
Integrated Operation Scenarios

1.5-D transport Code	Modeller	
ASTRA (v.6 + α)	Dong-Hyun Na (Seoul National University) Yong-Su Na (Seoul National University)	
ASTRA (v.6x + v.7)	A. Polevoi (ITER IO)	
CRONOS	J. Garcia (CEA)	
FASTRAN	J.M. Park (ORNL) Kyungjin Kim (Seoul National University)	
JINTRAC (JETTO)	F. Koechl (CCFE)	
TASK/TR	A. Wisitsorasak(King Mongkut's University of Technology Thonburi, Thailand)A. Fukuyama (Kyoto University)	
TOPICS	N. Hayashi (JAEA)	
TRANSP	X. Yuan (PPPL) Yong-Su Na (Seoul National University)	

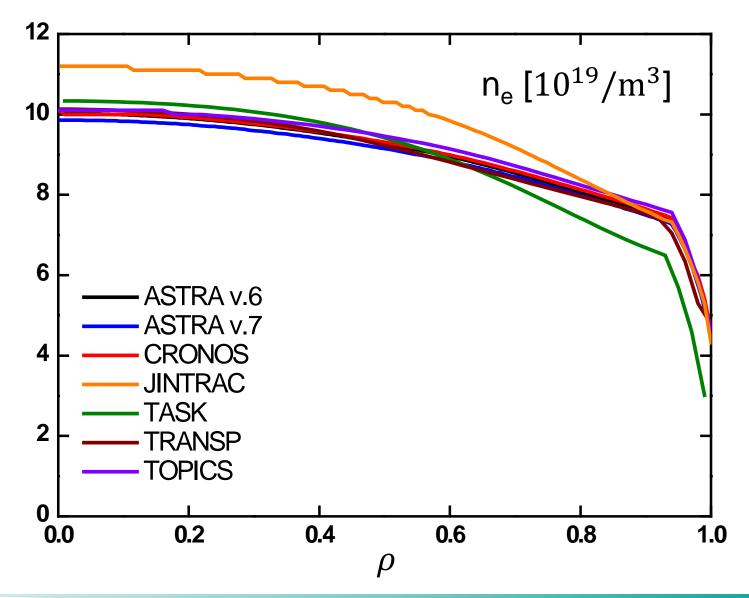
Outline

Integrated Operation Scenarios

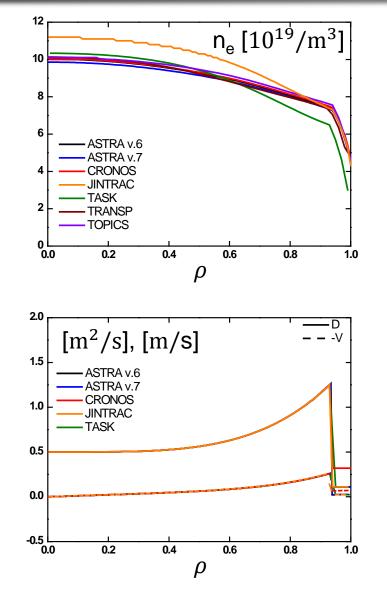

- Goal of modelling activities in ITPA IOS TG
- Motivation of particle transport benchmarking
- Overview of particle transport benchmarking activity
 - Benchmarking guideline
 - Participating 1.5-D transport codes and modellers
- First results of particle transport benchmarking
- Discussion

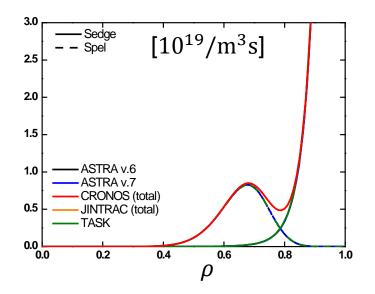

ITPA

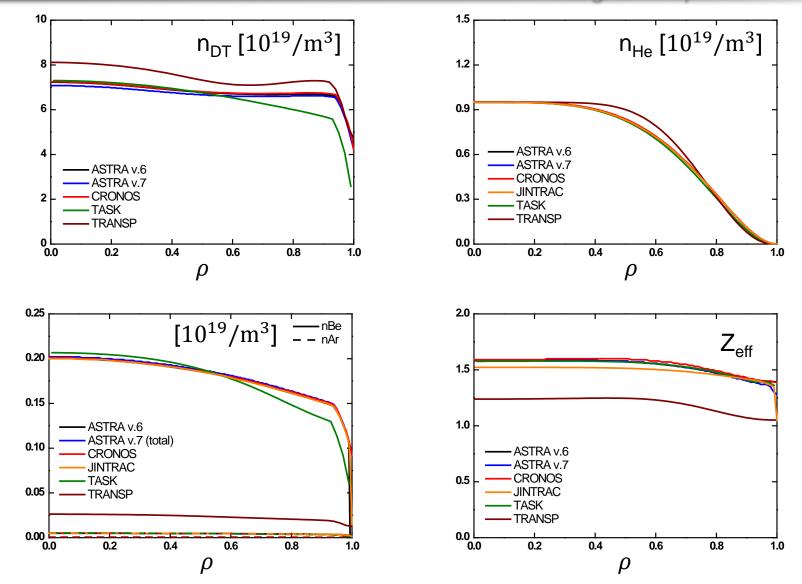
• Next-step work



Integrated Operation Scenarios




Integrated Operation Scenarios



Integrated Operation Scenarios

Integrated Operation Scenarios

Outline

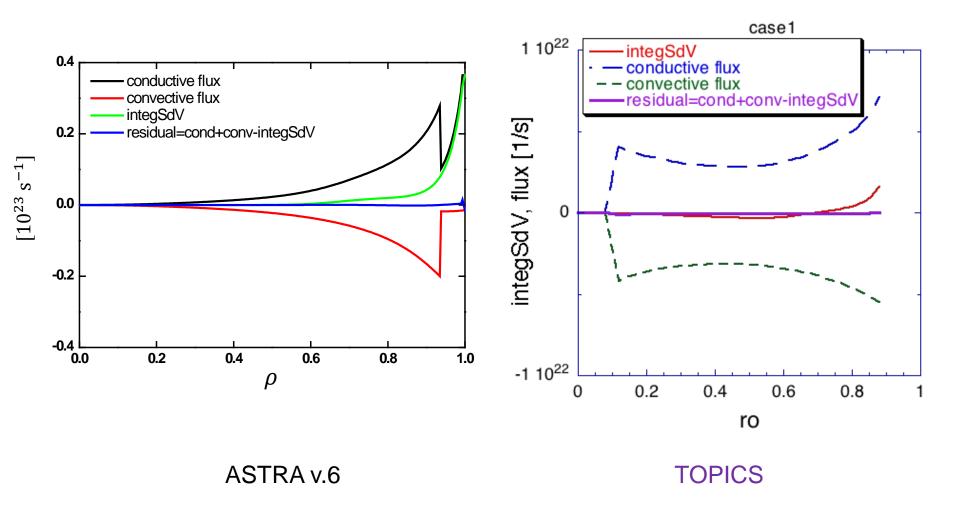
Integrated Operation Scenarios

- Goal of modelling activities in ITPA IOS TG
- Motivation of particle transport benchmarking
- Overview of particle transport benchmarking activity
 - Benchmarking guideline
 - Participating 1.5-D transport codes and modellers
- First results of particle transport benchmarking
- Discussion

ITPA

• Next-step work

Possible reasons for disagreement


Integrated Operation Scenarios

- Errors in the transport solver?
- Different equilibrium?
 - some using the prescribed one but the others solving the current diffusion equation
- Radial grid?

- Solving ion transport?
- Different definition of transport coefficients?
- Different treatment of impurities?

Check particle flow balance

Integrated Operation Scenarios

Transport equations being solved

Integrated Operation Scenarios

• ASTRA

$$\frac{\Gamma_{e}}{V'}\left(\frac{\partial}{\partial t} - \frac{\dot{B_{0}}}{2B_{0}}\frac{\partial}{\partial\rho}\rho\right)(V'n_{e}) + \frac{1}{V'}\frac{\partial}{\partial\rho}\Gamma_{e} = S_{e}$$

$$\frac{\Gamma_{e}}{n_{e}} = -V'G_{1}\left(D_{n}\frac{1}{n_{e}}\frac{\partial n_{e}}{\partial\rho} + D_{e}\frac{1}{T_{e}}\frac{\partial T_{e}}{\partial\rho} + D_{i}\frac{1}{T_{i}}\frac{\partial T_{i}}{\partial\rho} + D_{E}\frac{E_{\parallel}}{B_{p}}\right)$$

$$G_{1} \equiv \langle (\nabla\rho)^{2} \rangle \qquad V' = \frac{\partial V}{\partial\rho}$$

The Ware pinch term $\frac{E_{\parallel}}{B_p}$ is replaced by -1 to adapt arbitrary pinch model in ASTRA. D_E is defined as v in Guideline.

• CRONOS

$$\Gamma_{\rm e} = -D_{\rm e} \frac{\partial n_{\rm e}}{\partial \rho} - \frac{n_{\rm e} D_{\rm e}^{\rm e}}{T_{\rm e}} \frac{\partial T_{\rm e}}{\partial \rho} - \frac{n_{\rm e} D_{\rm e}^{\rm i}}{T_{\rm i}} \frac{\partial T_{\rm i}}{\partial \rho}$$

$$\frac{\partial}{\partial t} \left(V' n_{\rm e} \right) + \frac{\partial}{\partial \rho} \left(V' \left\langle |\nabla \rho|^2 \right\rangle \Gamma_{\rm e} \right) = V' S_{\rm ne}, \qquad -n_{\rm e} D_{\rm e}^{\rm E} \frac{E_{\parallel}}{\mu_0 B_{\rm p}} - n_{\rm e} V_{\rm e}^{\Gamma}$$

• TRANSP (PTSOLVER) $\rho = \sqrt{\Phi_{\lim}}$ $\frac{\partial}{\partial t} [V'n_e] + \frac{\partial}{\partial \rho} [V'\langle |\nabla \rho|^2 \rangle (n_e v_e - D_e \nabla n_e)] - \xi \frac{\partial}{\partial \rho} [\rho V'n_e] = S_e V' \qquad \xi = \frac{1}{2\Phi_{\lim}} \frac{d\Phi_{\lim}}{dt}$

Some codes solve ion transport

Integrated Operation Scenarios

• TOPICS

$$\frac{\partial n}{\partial t} = \frac{1}{V'} \frac{\partial}{\partial \rho} V' \left(D \left\langle \left| \nabla \rho \right|^2 \right\rangle \frac{\partial n}{\partial t} + V_{pinch} \left\langle \left| \nabla \rho \right| \right\rangle n \right) + S_{edge} + S_{pellet} + S_{fusion \ loss}$$

$$\frac{1}{V'}\frac{\partial}{\partial t}\left(n_{i}V'\right) + \frac{1}{V'}\frac{\partial}{\partial\rho}\left(V'\Gamma_{i}\right) = \left\langle S_{i}\right\rangle \quad \Gamma_{i} = -D_{i}\frac{\partial n_{i}}{\partial\rho}\left\langle\left(\nabla\rho\right)^{2}\right\rangle + v_{i}n_{i}\left\langle\left|\nabla\rho\right|\right\rangle$$

Some codes solve ion transport

Integrated Operation Scenarios

• TOPICS

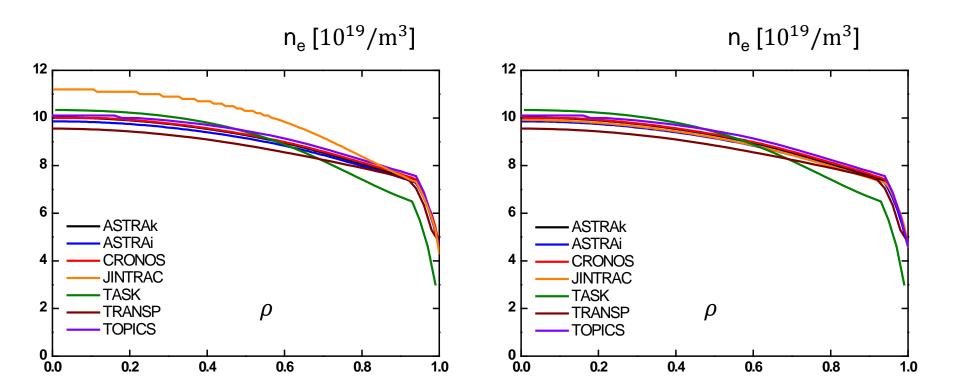
ITPA

$$\frac{\partial n}{\partial t} = \frac{1}{V'} \frac{\partial}{\partial \rho} V' \left(D \left\langle \left| \nabla \rho \right|^2 \right\rangle \frac{\partial n}{\partial t} + V_{pinch} \left\langle \left| \nabla \rho \right| \right\rangle n \right) + S_{edge} + S_{pellet} + S_{fusion \ loss}$$

• JINTRAC

$$\frac{1}{V} \frac{\partial}{\partial t} \left(n_i V' \right) + \frac{1}{V} \frac{\partial}{\partial \rho} \left(V' \Gamma_i \right) = \left\langle S_i \right\rangle \quad \Gamma_i = -D_i \frac{\partial n_i}{\partial \rho} \left\langle (\nabla \rho)^2 \right\rangle + v_i n_i \left\langle \left| \nabla \rho \right| \right\rangle$$

 Simulation rerun with the following modified settings: Additional pinch terms to accommodate for differences between solutions obtained with electron vs. ion particle transport equations in case of different impurity density profile shape:

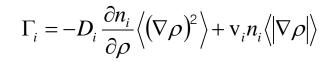

$$\mathbf{v}_{i} = \mathbf{v}_{inp} + \mathbf{v}_{inp} \frac{n_{e} - n_{i}}{n_{i}} - \frac{D_{inp}}{n_{i}} \left(\frac{\partial n_{e}}{\partial \rho} - \frac{\partial n_{i}}{\partial \rho} \right) \frac{\left\langle \left(\nabla \rho \right)^{2} \right\rangle}{\left\langle \left| \nabla \rho \right| \right\rangle}, \ n_{i} = n_{D} + n_{T}$$

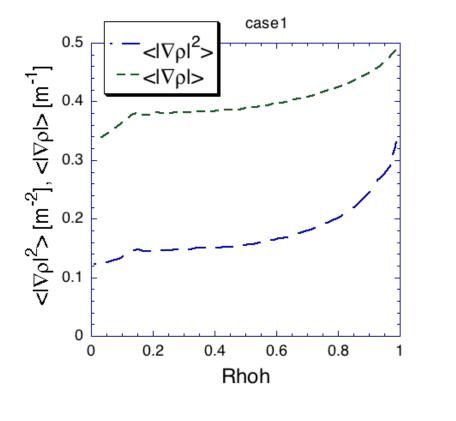
That way, the electron flux that would be obtained with an electron transport equation with fixed impurities can be calculated with the ion particle transport equations.

- The boundary condition of main ion densities at the separatrix has been adjusted in order to match $n_e(a) = 4.6 \times 10^{19} / m^3$.

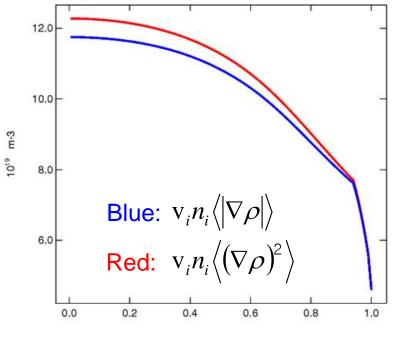
Some codes solve ion transport

Integrated Operation Scenarios



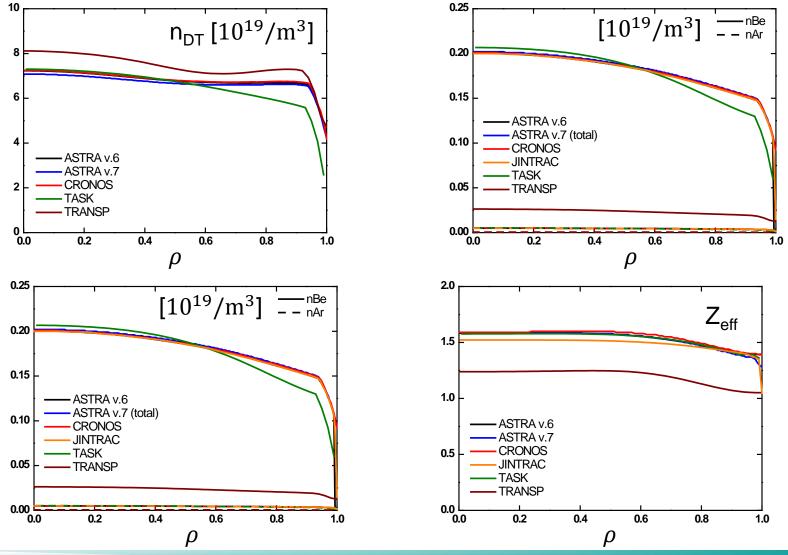

JINTRAC without correction

JINTRAC with correction


Effect of $\langle (\nabla \rho)^2 \rangle$.vs. $\langle |\nabla \rho| \rangle$ in pinch term

Integrated Operation Scenarios

ITPA


TOPICS

JINTRAC

Treatment of impurities

Integrated Operation Scenarios

• TRANSP solved impurity ionisation so that non-full striped impuritis (Be, Ar) are used.

NSTX-U Monday Physics Meeting, February 8, 2016

Outline

Integrated Operation Scenarios

- Goal of modelling activities in ITPA IOS TG
- Motivation of particle transport benchmarking
- Overview of particle transport benchmarking activity
 - Benchmarking guideline
 - Participating 1.5-D transport codes and modellers
- First results of particle transport benchmarking
- Discussion

ITPA

• Next-step work

Steps in benchmarking

Integrated Operation Scenarios

STEP 1: Benchmarking of particle transport solvers with prescribed transport coefficients and sources at one time point in the current flattop Purpose: to ensure agreement among particle transport solvers

STEP 2: Benchmarking of particle sources & sinks with prescribed transport coefficients at one time point in the current flattop Purpose: to compare source & sink models

STEP 3: Sensitivity scans of transport coefficients at one time point in the current flattop Purpose: to evaluate the impact of particle transport to fusion performance

STEP 4: Benchmarking of time-evolution in whole discharge with prescribed transport coefficients and sources in time Purpose: to evaluate the impact of particle transport to scenario evolution

STEP 5: Application of physics-based transport models Purpose: to predict particle transport in ITER

STEP 2

Integrated Operation Scenarios

STEP 2: Benchmarking of particle sources & sinks with prescribed transport coefficients at one time point in the current flattop Purpose: to compare source & sink models

- Particle pinch verification
- Particle source verification
 - Core source

Pellet source: size, frequency, velocity (limits from hardware...)

.vs

Continuous core source: atoms/m³/s and profile shape

- Edge source

How large and how deep should edge source be in H-mode

- Edge density specification, what do we base this on?
- D and v magnitudes, target τ_p and τ_P^* , relate to τ_E
- $n_e(a), S_{edge}, S_{core}, D, v \rightarrow solutions (uniqueness) <math>n_e(\Phi), \dots$
 - Examine range from flat n_e to $n_{e0}/\overline{n}_e \le 1.4$ -1.5
- Probable usage of ITER Baseline discharges from various devices to identify particle transport terms and behaviors.

Summary

Integrated Operation Scenarios

- Goal of modelling activities in ITPA IOS TG
- Motivation of particle transport benchmarking
- Overview of particle transport benchmarking activity
 - Benchmarking guideline
 - Participating 1.5-D transport codes and modellers
- First results of particle transport benchmarking
- Discussion

ITPA

• Next-step work