Comprehensive Study of Excitation of High-Frequency Alfvén Eigenmodes by Beam Ions in NSTX

- Conducted large set of 3D MHD-delta f hybrid linearized and nonlinear simulations to investigate CAE and GAE instability for a wide range of beam parameters ($2 < V_b/V_A < 6$, $0.3 < V_{\parallel}/V_A < 0.95$, P_b)
- Detailed understanding of CAE/GAE excitation is vital to predicting (and eventually preventing) their deleterious effects on plasma confinement, e.g. anomalous T_e flattening

SIMULATION RESULTS	EXPERIMENT/THEORY (DIS)AGREEMENT
CAE are stable for $V_{b}/V_{A} < 4$	Prediction: less CAE will be unstable in NSTX-U
Co-CAE more unstable than cntr-CAE	Experiment observes mostly cntr-CAE. Theory by Belikov (PoP 2003) claims co-CAE more unstable
GAE unstable for lower energy ($V_{b}/V_{A} \sim 2.5$), wider range of beam parameters	For n > 5, experiments observe mostly GAE
Most unstable co-(cntr-)GAE frequencies increase (decrease) with beam energy	Follows from dispersion + resonance condition
CAE freqs. increase with n cntr-GAE freqs. decrease then increase for n > 7	Experiment sees cntr-GAE frequency decrease with n – disagrees with approximate dispersion
No unstable CAE or GAE for $ n < 3$	Agrees with theory: very few resonant particles. Agrees with experiment: most modes have larger n
Mode amplitudes scale as dB ~ P_{b}^{2}	Experimental amplitudes scale with beam power. Agrees with saturation via particle trapping theory
CAE to KAW energy flux depends strongly on beam power (~ P_{b}^{5})	Consistent with experimental T_e flattening most dramatically at large beam power (6 MW). Theory explains $P_{KAW} = \Gamma_{CAE} db^2 \sim P_b^5$.

NSTX-U