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* Motivation: Integrated Data Analysis (IDA)

collaboration project
e |ntroduction to Bayesian Analysis
— Fundamentals of Bayesian analysis

— Example application of Te measurement using

double-filter SXR diagnostic

e Application of Bayesian Analysis to IDA




We aim to improve T, and Z_; measurement on |

NSTX-U using mtegrated data analysis (IDA). &

e Qver the next three years, we will concentrate on

— Increasing the accuracy, precision, and resolution (both
spatial and temporal) of T, and Z_;

 Integrate Thomson scattering, Multi-color soft x-ray,
charge-exchange recombination spectroscopy, and
other diagnostics as appropriate and available

« Initial priority is Z,4

e This project will also develop IDA expertise, with emphasis on
new methods of multi-diagnostic and multi-parameter analysis.




As fusion experiments become more complex,

maximum scientific value must be extracted from daté@

e As we transition to fusion experiments that are full nuclear
environments

— severe limitations will be imposed on diagnostics

e A representative example from the ITPA Diagnostics group of
the measurement challenges on ITER:

— Action Item 20a353, “Can we get Z_, from other
measurements?”

* No dedicated single-chord visible bremsstrahlung

measurement is currently planned for installation on
ITER

b



Integrated Data Analysis (IDA) provides a

framework to deal with measurement limitation&®

« The goal of IDA is to
— combine data from heterogeneous and complementary diagnostics
— consider all dependencies within and between diagnostics
— obtain the most reliable results in a transparent and standardized way.

* Increased measurement precision/resolution is a typical result of IDA.

« |IDA additionally enables formation of “meta-diagnostics,” which combine
information from various instruments to produce unique measurements.

— Z_on MST obtained by combining information from CHERS and SXR:
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Integrated Data Analysis is often accomplished

using a Bayesian statistical framework. )

e Highly modular
e Consistent and automatic error analysis

e Can include background/physics
information into the analysis quantitatively




* Introduction to Bayesian Analysis

— Fundamentals of Bayesian analysis




Good sources for learning more about Bayesian

Analysis A

o Sivia D.S. and Skilling J., Data Analysis: a Bayesian
Tutorial 2nd edn (Oxford: Oxford University), 2006

e Von Toussaint, U., “Bayesian Inference in physics,”
Rev. Mod. Phys. 83




Bayesian analysis has an alternate view of data

Interpretation &

* |n a classical approach to data analysis
— An objective Truth exists (i.e. a single right answer)
— Measurements sample that Truth imperfectly.
— Repeated measurements reveal the underlying Truth.

A Bayesian approach

— Has is a truth, but it is more subjective. (For example, the
data itself is the truth—it’s the physical entity that can be
measured.)

— Attempts to determine what we can learn from a single
measurement or a limited number of measurements.




The foundations of Bayesian Analysis are

Bayes’ Rule and Marginalization s

Bayes’ Rule:

P(xly,I)= P(ylx,[)P(x11)

P(ylI)

Marginalization:

P(xly,1)=fP(x,a|y,1)da




Estimation of electron temperature takes the

form d
szelzhood Przor
P(T 1 D.0) P(DIT,,0)P(T, |0)
- — P(D o)
Posterior - g
evidence

e T,is electron temperature, the desired parameter

D is the diagnostic data, i.e. the actual measurement
made

e (O is the uncertainty of the system




The posterior is the desired result

P(T,|D,o)

Posterior

Can be interpreted as the result and error bar.
Can be calculated directly

— Often involves inversions or fitting routines
— Often lacks uncertainty information




The Likelihood Function relates the measurement to

the parameter of interest through modeling. 5T

Likeljz\'hood

}’(DIE,GS

e |nvolves forward models of the system
— Physical processes generating signal
— Instrumentation effects
e |s often easier to calculate than the posterior probability

e Can incorporate systematic and statistical uncertainties in a
straightforward way

b




The Prior probability reflects our background

knowledge about the system d

Prior

P(T,0)

o Often this is a range of values in which we expect the answer
to lie.

o Often informed by physical constraints
— Te must be positive
— Must be within the measurement range of the diagnostic

b



The evidence is a normalization factor

{’(D | a}

evidence

e Can be ignored for parameter estimation problems
e Often important when choosing between 2 or more models

e Bayes’ Rule becomes:
leellhood Przor

P(T,1 D a)ocP(DIT o) P(T. | o)

Posterlor

b



— Example application of Te measurement using

double-filter SXR diagnostic




The two-color SXR tomography system contains

T, information in a poloidal cross-section.

* 40 unique lines of sight

at one toroidal location g'j 1575 ""~.,. |

— Two detectors: 425 pm | C/ ////7//// \k///, I(Q
and 800 um Be filters 92 \i??g\‘:{' } |
. Thicknesses chosento = 00 ‘\\\\}%’7’ ‘ 73%4\ \ ';
block high energy 0.2} /’\}X\§~r T
emission lines 04 “\\’0{4’ % /e
- Different thickness filters 06— . _ |

-0.6-0.4-0.2 0.0 0.2 0.4 0.6

allow estimation of x-ray r(m)

spectrum slope




Two-color SXR tomography system is capable of

measuring T..
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SXR forward model predicts x-ray emissivity on a 2-

dimensional grid.

e Three parameter
function for 7, profile

used (axisymmetric)
Te(r) = Teo(1 — (T/a)a)ﬁ

e Ansatz profiles for
density and Z_; used.




Predicted brightness based on x-ray emissivity

calculated for each detector

* Predicted brightness takes
iInto account:

— Geometry of line of sight
— Detector effects
— Be filter effects

* Predicted ratio, R,
calculated from predicated
brightness

0

ST



Likelihoods follow a Gaussian distribution. PEBY

» SXR detection relies on sensing photons = Poisson distributions
* In the limit of large numbers of photons, they are Gaussian
distributions.

P(Dy 1 T,(r),0) = gz e

: _(Rm-Rp)2
x= 20°

« 0 contains both the statistical and systematic sources of uncertainty
« Systematic uncertainties estimated from:
« Tolerances and Machining precision
 Filter thickness measurements
w  Filter calibrations




Likelihood function are often multidimensional ¢

P(Dy | T,(r),0) = P(Dgy | Ty, 0, p,0)
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Prior distributions can be uniform PDFs over a range

informed by experiment

Parameter Range

Teo 500-2300 eV
a 7-12
B 4-19

P(Tw)={

P(a) =+

1
P(B)=1 4-19

— for 500 <7, <2300
2300 - 500

0 otherwise

1
12-7
0 otherwise

for7=a<12

ford<pf <19

0 otherwise

 Likelihood functions calculated on uniform grid of points covering

these ranges

0




The posterior probability is the answer desired

P(Te(r)lDSXR’O-)oc\P(DSXR |E03a’ﬁ’02F(EO)P(a)P(ﬁ2

Likelihood function Priors




The posterior probability is the answer desired

P(Te(r)lDSXR’O-)oc\P(DSXR |E03a’ﬁ’02F(EO)P(a)P(ﬁ2

Likelihood function Priors
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The result is the most likely T, profile

P(E(r)lDSXRaa)“?(DSXR |Teo»aaﬁ,0)f’(Teo)P(a)P(/5}

Likelihood function Priors
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The most likely T, profile agrees well with TS.
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This is the most likely profile assuming the plasma is axisymmetric
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e Application of Bayesian Analysis to IDA




Integrated Data Analysis in a Bayesian

framework proceeds with a series of steps: )
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— Identify uncertainties and quantify with probability distribution functions (PDF)
— Combine all relevant information within a probabilistic framework
 include diagnostic models and prior knowledge
» develop a forward model for measurement
e marginalize out nuisance parameters such as systematic effects
— Search parameter space, which is often high-dimensional
— Final result is the posterior PDF of the quantity of interest

R. Fischer, A. Dinklage, and E. Pasch, “Bayesian
modelling of fusion diagnostics,” Plasma Phys.
Control. Fusion 45, 1095-1111 (2003).




Using Bayesian Framework to estimate Z_.4  ¢w

 Many Diagnostics are sensitive to Z
— Near infrared / Visible Bremsstrahlung
— Charge exchange recombination spectroscopy (CHERS)
— Soft x-ray (SXR)
— Neutral beam attenuation
— Thomson Scattering background light
— Loop voltage
—...efc.

P(Z . | SXR,CHERS,...) X Loy X Lpppg X ... X Priors

b

e.g. Lo, ~P(SXRI|Z )

0




Summary

 We have started developing an IDA technique using a Bayesian
probability framework to improve T, and Z_s measurements on NSTX-U

 The fundamental ideas in Bayesian Analysis are:
Pylx,)P(x|I)
P(yll)
— Marginalization: P(xly,I)=fP(x,a|y,I)da
» Consideration of all assumptions, background physical knowledge and

uncertainties are necessary when developing a Bayesian approach to the
analysis of a diagnostic.

— Bayes’ Rule: P(x|y,I)=

» Bayesian Analysis is a natural framework in which to develop IDA due its

b

— Modularity
— Automatic error analysis
— Ability to include background information in the analysis




