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We aim to improve Te and Zeff measurement on 
NSTX-U using integrated data analysis (IDA).!
•  Over the next three years, we will concentrate on!

–  increasing the accuracy, precision, and resolution (both 
spatial and temporal) of Te and Zeff!

•  Integrate Thomson scattering, Multi-color soft x-ray, 
charge-exchange recombination spectroscopy, and 
other diagnostics as appropriate and available!

•  Initial priority is Zeff!
!

•  This project will also develop IDA expertise, with emphasis on 
new methods of multi-diagnostic and multi-parameter analysis.!

!



As fusion experiments become more complex, 
maximum scientific value must be extracted from data.!

•  As we transition to fusion experiments that are full nuclear 
environments!
–  severe limitations will be imposed on diagnostics!

•  A representative example from the ITPA Diagnostics group of 
the measurement challenges on ITER:!
–  Action Item 20a353, “Can we get Zeff from other 

measurements?”!
•  No dedicated single-chord visible bremsstrahlung 

measurement is currently planned for installation on 
ITER!



Integrated Data Analysis (IDA) provides a 
framework to deal with measurement limitations. !
•  The goal of IDA is to!

–  combine data from heterogeneous and complementary diagnostics!
–  consider all dependencies within and between diagnostics!
–  obtain the most reliable results in a transparent and standardized way.!

•  Increased measurement precision/resolution is a typical result of IDA.!
•  IDA additionally enables formation of “meta-diagnostics,” which combine 

information from various instruments to produce unique measurements.!
–  Zeff on MST obtained by combining information from CHERS and SXR:!



Integrated Data Analysis is often accomplished 
using a Bayesian statistical framework.!

•  Highly modular!
•  Consistent and automatic error analysis !
•  Can include background/physics 

information into the analysis quantitatively!
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Good sources for learning more about Bayesian 
Analysis!

•  Sivia D.S. and Skilling J., Data Analysis: a Bayesian 
Tutorial 2nd edn (Oxford: Oxford University), 2006!

•  Von Toussaint, U., “Bayesian Inference in physics,” 
Rev. Mod. Phys. 83!



Bayesian analysis has an alternate view of data 
interpretation!
•  In a classical approach to data analysis!

–  An objective Truth exists (i.e. a single right answer)!
–  Measurements sample that Truth imperfectly. !
–  Repeated measurements reveal the underlying Truth. !

•  A Bayesian approach !
–  Has is a truth, but it is more subjective.  (For example, the 

data itself is the truth—itʼs the physical entity that can be 
measured.)!

–  Attempts to determine what we can learn from a single 
measurement or a limited number of measurements.!



The foundations of Bayesian Analysis are 
Bayesʼ Rule and Marginalization!

P(x | y, I ) = P(y | x, I )P(x | I )
P(y | I )

Bayesʼ Rule:!

Marginalization:!

P(x | y, I ) = P(x,! | y, I )d!!



Estimation of electron temperature takes the 
form!

•  Te is electron temperature, the desired parameter!
•  D is the diagnostic data, i.e. the actual measurement 

made!
•  σ is the uncertainty of the system!

P(Te |D,! )
Posterior

! "# $# =
P(D |Te,! )

Likelihood% &# '#
P(Te |! )

Prior%&# '#

P(D |! )
evidence
!"# $#



The posterior is the desired result!

•  Can be interpreted as the result and error bar.!
•  Can be calculated directly !

–  Often involves inversions or fitting routines!
–  Often lacks uncertainty information!

P(Te |D,! )
Posterior

! "# $# =
P(D |Te,! )

Likelihood% &# '#
P(Te |! )

Prior%&# '#

P(D |! )
evidence
!"# $#



The Likelihood Function relates the measurement to 
the parameter of interest through modeling.!

•  Involves forward models of the system!
–  Physical processes generating signal!
–  Instrumentation effects!

•  Is often easier to calculate than the posterior probability!
•  Can incorporate systematic and statistical uncertainties in a 

straightforward way!

P(Te |D,! )
Posterior

! "# $# =
P(D |Te,! )

Likelihood% &# '#
P(Te |! )

Prior%&# '#

P(D |! )
evidence
!"# $#



The Prior probability reflects our background 
knowledge about the system!

•  Often this is a range of values in which we expect the answer 
to lie.!

•  Often informed by physical constraints!
–  Te must be positive!
–  Must be within the measurement range of the diagnostic!

P(Te |D,! )
Posterior

! "# $# =
P(D |Te,! )

Likelihood% &# '#
P(Te |! )

Prior%&# '#

P(D |! )
evidence
!"# $#



The evidence is a normalization factor!

•  Can be ignored for parameter estimation problems!
•  Often important when choosing between 2 or more models!
•  Bayesʼ Rule becomes:!

P(Te |D,! )
Posterior

! "# $# !P(D |Te,! )
Likelihood% &# '#

P(Te |! )
Prior%&# '#

P(Te |D,! )
Posterior

! "# $# =
P(D |Te,! )

Likelihood% &# '#
P(Te |! )

Prior%&# '#

P(D |! )
evidence
!"# $#
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The two-color SXR tomography system contains 
Te information in a poloidal cross-section.!
•  40 unique lines of sight 

at one toroidal location!
–  Two detectors: 425 μm 

and 800 μm Be filters!
•  Thicknesses chosen to 

block high energy 
emission lines!

•  Different thickness filters 
allow estimation of x-ray 
spectrum slope!
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Two-color SXR tomography system is capable of 
measuring Te.!

•   !

•  Detectors that share a line 
of site have same ne, Zeff, 
and recombination.!

•   !
!

•  The relationship of the 
measured ratio to Te is not 
straightforeward.!
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Model Emiss (421µm)
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SXR forward model predicts x-ray emissivity on a 2-
dimensional grid. !

•  Three parameter 
function for Te profile 
used (axisymmetric) 

 
•  Ansatz profiles for 

density and Zeff used. 

• Temperature profile:
Te(r) = Te0(1− (r/a)α)β

3 Parameters: Te0, α, β

• Axisymmetric + Island:
Te(r, θ) = Te0(1− (r/a)α)β + ∆Teexp

�
−(δr−(r/a))2

2∆2
r

+ −(θ0−θ)2

2∆2
θ

�



Predicted brightness based on x-ray emissivity 
calculated for each detector!

•  Predicted brightness takes 
into account:!
–  Geometry of line of sight !
–  Detector effects!
–  Be filter effects!

•  Predicted ratio, Rp, 
calculated from predicated 
brightness!
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•  SXR detection relies on sensing photons     Poisson distributions!
•  In the limit of large numbers of photons, they are Gaussian 

distributions.!

•  σ contains both the statistical and systematic sources of uncertainty!
•  Systematic uncertainties estimated from:!

•  Tolerances and Machining precision!
•  Filter thickness measurements!
•  Filter calibrations 

P(DSXR |Te(r),! ) = 1
2! 2

e!"
2

" 2 =
Rm -Rp( )

2

2! 2

Likelihoods follow a Gaussian distribution.!
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Marginalized core Te 
(Te0)!

Marginalized edge gradient 
(α and β)!

Likelihood function are often multidimensional!

P(DSXR |Te(r),! )! P(DSXR |Te0,",#,! )



Prior distributions can be uniform PDFs over a range 
informed by experiment 

Parameter! Range!

Te0! 500-2300 eV!

α! 7-12!

β! 4-19!

•  Likelihood functions calculated on uniform grid of points covering 
these ranges!
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The posterior probability is the answer desired !

P(Te(r) |DSXR,! )!P(DSXR |Te0,!,",# )
Likelihood function

! "### $### P(Te0 )P(!)P(!)
Priors

! "## $##



The posterior probability is the answer desired !

P(Te(r) |DSXR,! )!P(DSXR |Te0,!,",# )
Likelihood function

! "### $### P(Te0 )P(!)P(!)
Priors

! "## $##
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Marginalized core Te! Marginalized edge gradient!



The result is the most likely Te profile!
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! "### $### P(Te0 )P(!)P(!)
Priors

! "## $##

0 0.2 0.4 0.6 0.80

500

1000

1500

r/a

T e (e
V)

 



The most likely Te profile agrees well with TS.!
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This is the most likely profile assuming the plasma is axisymmetric!
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Integrated Data Analysis in a Bayesian 
framework proceeds with a series of steps:!

–  Identify uncertainties and quantify with probability distribution functions (PDF)!
–  Combine all relevant information within a probabilistic framework!

•  include diagnostic models and prior knowledge!
•  develop a forward model for measurement!
•  marginalize out nuisance parameters such as systematic effects!

–  Search parameter space, which is often high-dimensional!
–  Final result is the posterior PDF of the quantity of interest!

!

1108 R Fischer et al

Figure 9. Marginal posterior distributions for the electron temperature and electron density at the
positions z = 6 cm: (a) shows the PDF representing the soft x-ray Te measurement, (b) repeats
the posterior from the Thomson scattering data and (c) shows the combination of soft x-ray and
Thomson scattering data.

x-ray

x-ray + Thomson

x-ray

x-ray + Thomson

Figure 10. Marginal posterior distributions for the electron density (left) and electron temperature
(right) at the positions z = 6 cm for the H∗ plasma discharge (#56123) for the cases: x-ray data
(· · · · · ·), Thomson scattering data (- - - -), combined x-ray and Thomson scattering data (——).

of uncertainties with PDFs allows direct study of the relevances of the various uncertainties to
the final result.

The Bayesian framework does not provide a tool for finding the right physical model or
the right statistical description. But it allows one to reveal inconsistencies in the description.
Combining diagnostics and including physical information provides a basis for discovering
mismeasurement or unreasonable physical assumptions. Validation of measurements is a
major advantage of the description of data and information with probability distributions.
A comprehensive link of all relevant data and information allows one to exploit the correlations
due to any interdependencies of the parameters entering the analysis. If the analysis has to be
revised, the Bayesian approach does not require revision of the entire analysis. An update of
the analysis on the basis of the new information is sufficient in conjunction with consideration
of possible interdependencies.

The physicist must be aware that the results of the analysis have to be interpreted on the
basis of prior assumptions. The prior knowledge entering the analysis has to be conservative
in the sense that it should contain only testable information. The uncertainties must be as
dependable as possible. For example, if the measurement process is described incompletely
the results including uncertainties will not reflect reality. Another class of sources of inconsis-
tencies arises due to an incomplete modelling of the physics. An example is the occasionally
occurring discrepancy in Te measurements by electron cyclotron emission radiometry and

R. Fischer, A. Dinklage, and E. Pasch, “Bayesian 
modelling of fusion diagnostics,” Plasma Phys. 
Control. Fusion 45, 1095–1111 (2003).	




Using Bayesian Framework to estimate Zeff!

•  Many Diagnostics are sensitive to Zeff!
– Near infrared / Visible Bremsstrahlung!
– Charge exchange recombination spectroscopy (CHERS)!
– Soft x-ray (SXR)!
– Neutral beam attenuation!
– Thomson Scattering background light!
– Loop voltage !
– …etc.!

!
!

P(Zeff | SXR,CHERS,...)! LSXR " LCHERS "..."Priors
e.g.  LSXR ~ P(SXR | Zeff )



Summary!
•  We have started developing an IDA technique using a Bayesian 

probability framework to improve Te and Zeff measurements on NSTX-U!
•  The fundamental ideas in Bayesian Analysis are:!

–  Bayesʼ Rule:!

–  Marginalization:!

•  Consideration of all assumptions, background physical knowledge and 
uncertainties are necessary when developing a Bayesian approach to the 
analysis of a diagnostic.!

•  Bayesian Analysis is a natural framework in which to develop IDA due its!
–  Modularity!
–  Automatic error analysis!
–  Ability to include background information in the analysis!

!

P(x | y, I ) = P(y | x, I )P(x | I )
P(y | I )

P(x | y, I ) = P(x,! | y, I )d!!


