Measurement of the NTV offset rotation profile in KSTAR

S.A. Sabbagh¹, Y.-S. Park¹, J.Y. Kim², W. Ko², K.C. Shaing³, Y.S. Bae², J.G. Bak², J. Chung², S.H. Hahn², Y. In², Y. Jeon², J.H. Kim², J. Ko², J.G. Kwak², S.G. Lee², Y.K. Oh², H.K. Park⁴, J.K. Park⁵, S.W. Yoon²

¹Department of Applied Physics, Columbia University, New York, NY, USA ²National Fusion Research Institute, Daejeon, Korea ³National Cheng Kung University, Tainan, Taiwan ⁴UNIST, Ulsan, Korea ⁵Princeton Plasma Physics Laboratory, Princeton, NJ, USA

presented at the

NSTX-U Physics Meeting PPPL September 12th, 2016 Princeton, NJ

(Supported by U.S. DOE grant DE-FG02-99ER54524)

Measurement of the NTV offset rotation profile in KSTAR – S. Sabbagh, Y.S. Park (Columbia U.), J. Kim (NFRI), et al. 9/12/16

Overview Outline of this Talk

- Two parts to this talk
 - 1. <u>Main part</u>: (Very) recent measurement of NTV offset rotation profile in KSTAR
 - 2. <u>Second separate result</u>: NTV rotation braking with global n = 1, non-pitch-aligned 3D field

<u>The NTV Offset Rotation Profile was recently</u> <u>directly measured in KSTAR</u>

Motivation

- Plasma rotation highly important for tokamak stability and confinement
- Future fusion devices are envisioned to have far less momentum input
- If sufficiently strong, this rotation could provide stabilization and improved performance in ITER and future devices

• Outline

- Goal 1: Use an innovative technique to measure the NTV offset rotation profile on KSTAR for the first time <u>COMPLETED</u>
 - NTV offset V_b profile directly measured
- Goal 2: Use new counter-I_p target plasma to measure the NTV offset rotation profile on KSTAR <u>TO BE DONE</u>
 - Reverse-I_p target plasma under development by Jay Kim

Present experiment directly measured the V_{0-NTV} profile with no NBI momentum

• What did we do?

- Used ECH for plasma heating, avoided issues of strong NBI torque
- Measured intrinsic rotation using NBI as a diagnostic beam for CES

Issues related to experiments with NBI torque

- □ T_{NBI} term in torque balance
 - Is computed, not directly measured
 - Is typically much larger than the T_{NTV} component due to offset rotation *→*analysis is prone to error
 - The profile of T_{NBI} matters not just zero net input torque from NBI
- Companion experiment to proposed NSTX-U experiment
 - Original, approved proposal XP1062 for NSTX using HHFW (2010 !)
 - Proposal "NTV steady-state offset velocity at reduced torque with HHFW" submitted to NSTX-U Research Forum (2015)

Intrinsic Torque due to Neoclassical Toroidal Viscosity (NTV) – a controllable momentum source

(K.C. Shaing, K. Ida, S.A. Sabbagh, Nucl. Fusion **55** (2015) 125001)
 Full Theory (Y. Sun, K. Liang, K.C. Shaing, et al. Nucl. Fusion **51** (2011) 053015)

- The non-ambipolar difference of ion and electron flux due to the application 3D fields yields a so-called "offset rotation profile", V_{0-NTV}
- Generally, the local rotation speed can be either in the co- or counter-I_p direction if dominated by electron/ion flux, respectively
 - The electron effect is ignored in most papers on the topic
- Highly Simplified Theory
 - Consider a highly simplified theory to help understand characteristics
 - Simplified NTV torque profile: $T_{NTV} = C_1 \delta B^2 (V_{\phi} V_{0-NTV})$
 - □ Simplified V_{0-NTV} profile: $V_{0-NTV} = C_2 dT_i/dr C_3 dT_e/dr$ (for future analysis)
 - Electron effects can dominate at low collisionality important for ITER
 - Unlike "intrinsic rotation", the T_{NTV} can be controlled by the applied 3D field spectrum and strength

<u>Consider simple torque balance equation to</u> <u>further understand expected dynamics (I)</u>

• Simple torque balance $\frac{dL}{dt} = T_{NTV} + T_{NBI} + T_{RF} + T_{Intrinsic} - \frac{L}{\tau_{2D}}$

(e.g. W. Solomon, et al., Phys. Plasmas 17 (2010) 056108, Equation 8)

Consider equations with/without 3D field (in steady-state)

$$T_{NTV} + (T_{RF} + T_{Intrinsic}) - \frac{L}{\tau_{2D}} = 0 \qquad \text{(with 3D field } L \to IV/R)$$
$$(T_{RF} + T_{Intrinsic}) - \frac{L(0)}{\tau_{2D}} = 0 \qquad \text{(without 3D field } L(0) \to IV_{I}/R)$$

• Use simple NTV model to express offset rotation $T_{NTV} = C_1 \delta B^2 (V_{\emptyset} - V_{0-NTV})$

<u>Consider simple torque balance equation to</u> <u>further understand expected dynamics (II)</u>

Combine equations

□ Assume (T_{RF} + T_{intrinsic}) not function of 3D field; use simple T_{NTV} model

$$C_1 \delta B^2 (V_{\emptyset} - V_{0-NTV}) + \frac{I}{R\tau_{2D}} (V_{\emptyset} - V_I) = 0$$

(V₁ is the toroidal velocity measured without 3D field applied)
I → moment of inertia

$$V_{\emptyset} = \left(\frac{C_1 \delta B^2}{C_1 \delta B^2 + I/R\tau_{2D}}\right) V_{0-NTV} + \left(\frac{I/R\tau_{2D}}{C_1 \delta B^2 + I/R\tau_{2D}}\right) V_I$$

(on each ψ surface)

Expected dynamics

- a) $\delta B = 0$: $V_{\phi} = V_{I}$
- b) low δB : measured V_{ϕ} profile close to V_I
- c) increased δB and $(|V_{\phi}| >> |V_{0-NTV}|)$: $V_{\phi} \rightarrow V_{0-NTV}$
- d) sufficiently high δB : V₆ saturates to V_{0-NTV}

- Brief summary of success (~ 10s long pulses)
 - NBI used as diagnostic worked well CES has good data V_b profile measured
 - \square n = 2 field varied scans with and without density feedback
 - Without density feedback: 2.0, 2.8, 3.2, 4.0 kA/turn
 - With density feedback: (at least) 1.0, 2.0, 2.4, 2.8, 3.2, 4.0 (δB² factor of 16 change)
 - □ Clear changes to CES measured V_{ϕ} evolution due to varied n = 2 field strength

Results from first time point measured (2.8s)

<u>Two techniques were used to measure the</u> <u>rotation profile approaching V_{0-NTV}</u>

- CES rotation profile extrapolated back to start of NBI
 - Involves an extrapolation 10 20 ms earlier in time
 - similar to technique used by Podesta on NSTX (2009) to measure intrinsic rotation in HHFW plasmas
- CES rotation profile analysis re-analyzed to the earliest possible time after the start of NBI
- The best technique to use is still being evaluated
 - CES was re-analyzed just a few days ago
 - Results are qualitatively similar, exact rotation values change a bit
 - Will show results from both techniques

Analysis of CES data and NBI diagnostic technique measures intrinsic V₀ from ECH

The excellent (low error) KSTAR CES diagnostic required for this analysis

<u>Condition a)</u>: the intrinsic V_{ϕ} from ECH establishes our $\delta B = 0$ reference V_{ϕ} profile

Condition b): at 1.0 kA/turn, δB is small and V_{ϕ} is close to the V_{ϕ} with no 3D field

Condition c): at 2.4 kA/turn, δB is sufficiently large to make V_{ϕ} approach V_{0-NTV}

Measurement of the NTV offset rotation profile in KSTAR – S. Sabbagh, Y.S. Park (Columbia U.), J. Kim (NFRI), et al. 9/12/16 14

Condition d): at 3.2 kA/turn, δB is sufficiently large to make V_{ϕ} saturate to V_{0-NTV} in the core

<u>Condition d)</u>: at 4.0 kA/turn, δ B sufficiently large to make V_{ϕ} saturate to V_{0-NTV} in core+outer region

<u>Unique result</u>: resulting saturated V_{0-NTV} profile is in the co-Ip direction – electron NTV dominates

- Consistent w/theory: The ratio of ion to electron NTV torque is $(T_i/T_e)^{3.5}(M_i/M_e)^{0.5}=0.15$
 - electron NTV offset should dominate
 - theory expects V_{0-NTV} in the <u>CO-I</u> direction
- First time that
 - NTV offset profile directly measured
 - NTV measured in the co-I_p direction
- Notably strong velocity shear in outer region

<u>Comparison of V_{0-NTV} profile to gradient in T_e profile requires further analysis</u>

Results from second time point measured (6.3s)

/16 20

<u>Condition a)</u>: the intrinsic V_{ϕ} from ECH establishes our $\delta B = 0$ reference V_{ϕ} profile

<u>Condition b)</u>: at 1.0 kA/turn, δ B accelerates the core a small amount, slows further out

N TAR Measurement of the NTV offset rotation profile in KSTAR – S. Sabbagh, Y.S. Park (Columbia U.), J. Kim (NFRI), et al. 9/12/16 22

Condition c): at 1.6 kA/turn, core continues to accelerate, while plasma further out slows

Measurement of the NTV offset rotation profile in KSTAR – S. Sabbagh, Y.S. Park (Columbia U.), J. Kim (NFRI), et al. 9/12/16 23

Condition d): at 2.4 kA/turn, profile is largely saturated, stronger V_{ϕ} shear forms at large R

Measurement of the NTV offset rotation profile in KSTAR – S. Sabbagh, Y.S. Park (Columbia U.), J. Kim (NFRI), et al. 9/12/16 24

Condition d): at 3.2 kA/turn, much stronger V₆ shear at large R is confirmed

Why are the present results unique and important?

• Why unique?

- □ First time that V_{0-NTV} profile has been directly measured w/ $T_{NBI} = 0$
- □ First time V_{0-NTV} has been measured dominated by electron effects
 - V_{0-NTV} profile measured in the co-I_p direction for the first time
- Why important?
 - Co-I_p directed V_{0-NTV} can be higher than ECH-induced co-I_p rotation in edge region
 - Rotation shear in the outer plasma region is <u>15 times stronger</u> than rotation shear due to ECH
- ITER relevant: |V_{0-NTV}| is strong compared to ITER modeling
 - □ ITER 15 MA simulations: $\Omega_{\phi} \sim 2 \text{ krad/s}$ in edge region
 - □ Recent KSTAR experiment: $\Omega_{\phi} > \frac{12 \text{ krad/s}}{12 \text{ krad/s}}$ in edge region (scaling?)
 - Potential to greatly increase rotation shear in outer plasma region

<u>Several next-steps to address regarding V_{0-NTV}</u> <u>understanding</u>

- Perform non-linear least squares fit of V_φ vs. δB² (at each R)
 This will <u>quantitatively</u> determine how close measured V_φ is to V_{0-NTV}
- V_{0-NTV} profile scaling with plasma parameters
 Data from present experiment may provide some answers
- V_{0-NTV} profile comparison to theory including electron effects
 All known experimental publications only consider V_{0-NTV} ~ d(Ti)/dr
- Comparison of present results to ohmic intrinsic rotation
 Results published by S.G. Lee, et al.
- Run second part of experiment using reversed-I_p plasma

STEP 2: Use Counter-Ip to measure NTV offset V profile

- Set-up Target Plasma Shots
 - For counter-lp shot (2016) <u>15884</u>: Bt = 2.3T, lp = 0.51 MA, q95 = 6, lp flattop = 1s 7s; <u>ECH set for BEST OUTER</u> <u>HEATING</u>
- Setup for IVCC 3D fields
 - Step 2B: Start with IVCC = 4.0 kA (n = 2 midplane coils ONLY like FIRST STEP of shots <u>13433</u> or <u>13446</u>)
 - Step 2D: Start with IVCC = 4.0 kA (n = 2 midplane + n = 1 non-pitch-aligned (0 deg) like FIRST STEP of shot 13436)

Second separate result: NTV rotation braking with global n = 1, non-pitch-aligned 3D field

- Set-up Shots
 - (2016) Target <u>15778</u> (Bt = 1.8T); (2015) Target plasmas <u>13302</u> (Bt = 2.0T), <u>13433</u> (Bt = 2.6T), <u>13446</u> (Bt = 1.8T)
- Setup shots for IVCC timing

Vary applied field magnitude and spectrum (2 or three steps using n = 2 midplane; n = 1 non-pitch-aligned; n = 1 pitch-aligned → shots <u>13433</u>, <u>13446</u>

Take second shot, changing the order of the IVCC current steps \rightarrow shots 13434

Shots with COMBINED non-resonant field spectra (n = 2 + n = 1 non-pitch-aligned)
 Ac Vary applied field magnitude fixed combined spectrum (n = 2 midplane; n = 1 non-pitch-aligned: → shots 13437, 13447
 BC Take second shot, changing the order of the IVCC current steps → shots 13436

Important new results were ALSO found in "Step 3" of the experiment (7 shots)

 Significantly stronger non-resonant n = 2 NTV braking was found compared to our 2015 experiment, apparently due to high plasma performance (T_i)

- The n = 1 non-pitch-aligned field spectrum concluded last year to allow non-resonant braking – was found to disrupt the plasma this year
 - □ Apparently due to higher T_i this year
 - Hypothesis is that stronger non-resonant n = 1 breaking gives way to resonant 3D field penetration and locking
 - Reduces confidence that n = 1 non-resonant field can be reliably used for core plasma rotation control

Stronger n = 2 non-resonant NTV in Monday's experiment than in 2015

33

<u>Stronger n = 2 non-resonant NTV during 2016</u> <u>run apparently due to increased T_i </u>

• NTV torque in "1/v" regime scales as $T_i^{2.5}$

<u>n = 1 non-pitch-aligned 3D field spectrum now</u> apparently leads to resonant field penetration/locking

• NTV braking appears non-resonant to start, but V_{ϕ} eventually bifurcates

<u>n = 1 non-pitch-aligned 3D field spectrum now</u> <u>apparently leads to resonant field penetration/locking</u>

• NTV braking appears non-resonant to start, but V_{ϕ} eventually bifurcates

Supporting slides follow

STEP 3: Long-pulse shots that need to be taken

- IVCC setup <u>13434 (type (B)), 13436 (type (Bc))</u>
- IVCC setup <u>13443 (constant current steps)</u>
- Divertor gas puffing setup from shots: <u>13443</u> (0.6v), <u>13442</u> (0.7V)
- B_t = 1.8 T
 - Suggested 2016 target is <u>15778</u>; reduce I_p to 0.5 from 0.6 MA and match Ip rise time of a shot like 13433, 13434
 - Shots to take:
 - type (B) (IVCC setup 13434), type (Bc) (IVCC setup 13436) (<u>2 shots</u>)
 - <u>NO</u> divertor gas puff (constant IVCC steps like 13443) (<u>1 shot</u>)
 - with divertor gas puff 0.6V (constant IVCC steps like 13443) (<u>1 shot</u>)
- $B_t = 2.0 T$
 - Shots to take: (Increase $B_t = 2.0T$ from above)
 - <u>NO</u> divertor gas puff (constant IVCC steps like 13443) (<u>1 shot</u>)
 - with divertor gas puff 0.6V (constant IVCC steps like 13443) (<u>1 shot</u>)

MP2015-05-23-001 "Isolation of NTV torque profile" on KSTAR established isolated NTV profile using IPS capability

(Y.S. Park, S.A. Sabbagh, Y. Jeon., et al., (approved by U.S. Committee for IAEA FEC 2016)

Results show non-resonant NTV characteristics; broad NTV torque profile

 \Box $\Delta \omega_{\phi}$ does not change sign across profile (non-resonant); $\Delta \omega_{\phi} \sim 0$ near plasma edge

□ 3D field spectrum varied: similar $\Delta \omega_{\phi}$ profiles, n = 1 pitch non-aligned has largest NTV

####