EAST: opportunities for collaboration

Co-PI: Kevin Tritz, Johns Hopkins University

On behalf of the US-China PMI collaboration: Lead PI: R. Maingi, Princeton Plasma Physics Lab Co-PI: Z. Wang, LANL Co-PI: D.G. Whyte, MIT Co-PI: J.M. Canik, ORNL Co-PI: J.M. Canik, UI-UC Co-PI: B.D. Wirth, UT-K

*Happily acknowledge participation by T.H. Osborne, GA

NSTX-U Monday Physics Meeting 13 Feb 2017

'*|=:*/_|

ASIPI

Goal of collaboration is to help EAST manage PMI for long pulse operation

- Evaluate performance of W, Mo, and C PFCs, and optimize Li delivery
 - Powder droppers for recycling and ELM control (PPPL, JHU, ORNL, GA*, LANL)
 - Granule injectors for ELM triggering and pacing (PPPL, LANL)
 - Flowing liquid lithium limiter to optimize PMI (PPPL, UI-UC)
 - Improved core SXR system for impurity diagnosis (JHU)
- Analyze role of Li and cryopump for recycling control
 - Physics based lower divertor cryopump design (ORNL, PPPL)
 - Divertor heat flux footprints (PPPL, ORNL, UT-K)
- PFC tile diagnosis
 - Net erosion and deposition with depth markers on tiles (MIT)
 - Analysis of removed tiles (UT-K)

- First set of experiments in Dec. 2016
 - All shots in Upper-Single Null
 - Ion grad-B drift toward bottom; "unfavorable" direction
 - Mix of heating methods, and powers
- Plans for remainder of 2017

Very good progress made on Li collaborative experiments in Dec. 2016

- Part 1a: mitigate/suppress ELMs with dropper
 - Previous: ELM suppression in 2013 in C divertors
 - Issue: No effect on ELMs in all metal ASDEX-U, with Li seeding via pellets [P. Lang, R. Maingi, D. Mansfield, NF 2013]
 - New: ELM suppression in EAST achieved for 4 sec
 - Conditioning effect of dropper seen in following discharges
 - SMBI feedback off important element of result
- Part 1b: expand the ELM suppression with dropper to higher heating power
- Part 2: determine the dependence of ELM pacing on lithium granule size and speed
- Part 3: Flowing liquid lithium limiter experiment

New Capability in 2016: EAST outfitted with two droppers, and a W upper divertor

CCD_G True color

CCD_D

5

New Result: ELM Suppression Achieved with Lithium Dropper into an USN discharge using W divertor in EAST

New Result: Third shot (#70593) with dropper had no big ELMs at all in EAST, not even in the beginning

- D_{α} baseline reduced shot-by-shot
- Third shot ELM mitigated, even before active Li injection
- Li @ 3.5 s -> full ELM suppression
- Third shot H-L ~ 7.5 sec
- Data from 12/15/16: detailed analysis in progress!

Very good progress made on Li collaborative experiments in Dec. 2016

- Part 1a: mitigate/suppress ELMs with dropper
- Part 1b: expand the ELM suppression with dropper to higher heating power
- Part 2: determine the dependence of ELM pacing on lithium granule size and speed
 - EAST: ELM pacing previously demonstrated; 1 size granule
 - D3D: ELM heat flux mitigation observed
 - New: four different granule sizes injected; granule size threshold found (between 0.3mm and 0.5 mm)
 - Goal: do modeling to see if threshold size agrees with predictions
- Part 3: Flowing liquid lithium limiter experiment

Lithium granule injector – 0.5 mm granules usually trigger ELMs, but not 0.3 mm – near mass threshold?

- 0.4 MA, 2.5 T, 2 MW PLH2,
 3.3 MW PNBI, 0.4 MW PECH,
 0.5 MW ICRF
- Stored energy relatively constant
- Black 0.5 mm granules
- Blue 0.3 mm granules
- More density from 0.5 mm granules

ELM pacing with lithium granules achieved transiently in EAST with W divertor (small granules)

10

ELM pacing with lithium granules achieved transiently in EAST with W divertor (no ELM size mitigation)

• Rapid ELMy plasma converted to 50-60 Hz ELMy plasma

- In one phase, plasma resumes rapid ELMs for short time
- 4-5 granules required for transition
- Maintained for duration of injection ~ 3 sec

Very good progress made on Li collaborative experiments in Dec. 2016

- Part 1a: mitigate/suppress ELMs with dropper
- Part 1b: expand the ELM suppression with dropper to higher heating power
- Part 2: determine the dependence of ELM pacing on lithium granule size and speed

• Part 3: Flowing liquid lithium limiter experiment

- Previous: limiter compatible with H-mode, but damage to front face
- New: limiter put into higher power discharges; no damage
- Avoided bringing limiter close to separatrix with NB heating (large fast ion orbits could have caused previous damage)

Flowing liquid lithium limiter shown to be compatible with Hmode discharges in EAST in Oct. 2014

Goal: evaluate flowing B_{t} liquid lithium as a PFC Feed pipe Designed/made at PPPL Distributor box i flow inside box Guide - Cu heat sink Li flow plate - SS protective coating Li outflow from channels Inserted at midplane on Collector Distributor channels DC EM pump MAPES system H-modes and ohmic discharges compatible Li tank with flowing Li limiter Limiter - $q_{peak}^{limiter} \sim 2 MW/m^2$ **Exchange** box Bellov Next design will improve Plasma SS coating and heaters, 6m followed by a re-design H port using a Mo heat sink J. Ren et al., Rev. Sci. Instrum. 86 (2015) 023504 J.S. Hu et al., Nucl. Fusion 56 (2016) 046011

New: FLiLi compatible with H-modes in EAST; extended to higher heating power than in 2014

- Achieve flowing liquid Li (FLiLi) driven by inner EM pump
- FLiLi compatible with auxiliary heated plasmas: 0-4.5 MW
 - No obvious limiter surface damage; improvement from Oct. 2014!
 - Improved plasma performance including full-field ohmic H mode
- Possible ELM mitigation in several cases
 - Transient ELM-free H-modes observed, with strong increase of $W_{\rm MHD}$ and H98

Before FLiLi experiment

After FLiLi experiment

First time observation: Ohmic H-mode observed with FLiLi, with unfavorable drift direction

Can this be also achieved with Li dropper?

First time observation: ELM-free H-mode observed with FLiLi, with transient increases in H98

 Atypical behavior for EAST – are the continuous edge modes suppressed? True ELM-free H-mode?

Outline

- Goals of collaboration
- First set of experiments in Dec. 2016
- Plans for remainder of 2017

EAST schedule for next year has been disclosed

- EAST experiments stopped end of Dec. 2016
 - Shut down for Chinese New Year for 2 weeks on 1/20/17
 - An experiment planning meeting is scheduled for March 13-14, 2017, similar to the first one in Jan. 2016
- Restart operations in Spring, 2017 with no changes
 - 2 month run in May and June
 - Opportunities for follow-on lithium experiments
 - Lower divertor has damage cannot put much power on it
- Shut down summer 2017 to install W lower divertor
 - Start-up ~ early 2018 with all metal walls
 - Plan for a controlled lithium introduction after assessing uncoated tungsten performance

Potential follow-on experiments

- Lithium dropper: mitigate ELMs in higher power and higher current discharges
 - Requires slow and systematic increase in P_{aux} and dropper variations to understand how much is required
 - Ohmic H-mode with dropper in USN, like FLiLi
- Lithium granule injector: mitigate ELMs in ELM-free conditions, with or without dropper, or in low frequency ELMy H-mode
 - Highest power discharges probably require larger granules
- Flowing liquid lithium limiter: need to test with NBI H-mode, compatibility with fast ions (likely 2018)
 - New version of FLiLi made of Mo being designed @ PPPL

 "Deliver impactful science and provide leadership for the PPPL-led multi-institutional international collaboration on EAST, as measured by the 2017 progress report, research publications and highlights, and participation in periodic progress review videoconferences."

Current EAST heating capabilities

- LHCD-4.6 GHz < 3 MW (typical 2 MW)
- LHCD-2.5 GHz < 2 MW (typical 0,8 MW)
- NBI-1 (co) < 3 MW
- NBI-2 (ctr) < 3 MW
- ECRH < 0.5 MW (typical 0.4 MW)
- ICRH < 2 MW (coupling efficiency ~ 25%)

Long pulse steady-state operation on EAST

ASIPP

US-ASIPP worked extremely well – we used the term "ONE TEAM" as a moniker

Shown by EAST management in several forums

Backup

Innovative gravitational dropper used to drop impurities and improve performance in the edge of fusion devices

ELM frequency drop correlated with Li injection in EAST (2013); elimination required several sec

• H_{H98} was only ~ 0.75; type III ELMs here?

J.S. Hu, PRL 114 (2015) 055001

Edge coherent mode (ECM) turned on with Lithium injection (and correlated ELM elimination) in EAST in 2013

- ECM thought to augment particle transport, which prevents impurity accumulation (Data from Mirnov coils)
- Analysis suggests intermediate v* mode
 - Mode in red color at same frequency as ECM but different poloidal structure

J.S. Hu, PRL 114 (2015) 055001

ELM frequency drop correlated with Li injection in EAST (2013); elimination required several sec

J.S. Hu, PRL **114** (2015) 055001

New Result: Second shot with Lithium Dropper Achieved ELM Suppression Earlier than First in EAST

- 0.45 MA, 2.5 T, P_{aux} ~ 3 MW
 2 MW PLH2, 0.5 MW PLH1, 0.4 MW PECH
- Stored energy drops by <10% with Lithium dropper
 - ELMs suppressed 3.9-8s
 - D_α baseline lower dropper provided real time conditioning!
- Comparable density
 - NBI diagnostic blips can trigger short burst of ELMs

ELM Mitigation may have been achieved in high power discharges with lithium dropper

- 0.4 MA, 2.5 T, P_{aux} ~ 5 MW
 1.7 MW PLH2, 1.7 MW PNBI, 0.4 MW PECH, 1 MW ICRF
- Stored energy relatively constant
- D_α amplitude reduced needs optimization of Li?

• Comparable density until 5.5 sec, when granules used in reference (black) discharge

Impurity granule injector used to pace ELMs and test heat flux mitigation in tokamaks

A. Bortolon, NF 56 (2016) 056008

JOREK modeling used to project size threshold for of when pellets can trigger ELMs, e.g. for ITER 15 MA Q=10 scenario

- Ballooning mode triggered roughly when local pressure reaches ~ 250% of pre-pellet pressure
 - Required $r_{pel} \ge 3.7$ mm
 - Required $v_{pel} > 350 \text{ m/s}$
 - Likely an upper bound for needed pellet size, as DIII-D minimum pellet size was overestimated by factor of 2-4

Most (maybe all?) of the 0.5 mm granules trigger ELMs

 ELMs not paced – natural ELM frequency about the same as the granule rate used

Few of the 0.3 mm granules trigger ELMs

- Some of the 0.3 mm granules that fell in clumps may have triggered ELMs
- 0.3 mm may be just below size threshold

Compared to last week, substantial progress made on ELM triggering with large granules (0.7 mm shown)

- Higher I_p, higher P_{aux} discharge chosen (based on #70195)
- Stored energy much higher in new targets
 - Previously first few (large) granules drove us to L-mode Hfactor

Lithium granule injection shifts the density profile outward, strengthening the ECM eliminating the MCM

FLiLi responds to bias on EM pump and proximity to separatrix

More uniform coating of FLiLi in 2016 expt than in 2014 (next slide)

✓ The zones without Li cover are highlighted in red line on the LHS plot
 ✓ The Li surface coverage is above 80%; the Li wetting zone is much larger than that (~30%) in the 2014 campaign

Li flow and wetting surface in 2014

Publication and Presentation Plan

- Planned papers, mostly in progress (US led)
 - NF letter on ELM suppression with W divertor Maingi
 - APS invited on ELM suppression with W divertor S. Zhen
 - Granule size triggering threshold Lunsford
 - Overview granule ELM triggering S. Zhen
 - FLiLi results G. Zuo
 - Li dropper to suppress high-Z impurities X. Wei

Conferences

- ITPA Pedestal Edge Physics, York, UK 4/17: US, China
- ITPA Divertor & SOL, York, UK 5/17: China
- SOFE, Shanghai, China, 6/17: China, US
- EPS, Belfast, Ireland, 6/17: US, China
- H-mode workshop, St. Petersburg, Russia, 9/17: China, US
- ISLA, Moscow, Russia, 9/17: China, US?

Plans for 2017 by institution (1)

- PPPL
 - Deliver a multi-chamber granule dropper, targeting experiments in the May-June 2017 time frame
 - Initiate analysis on SOL heat flux footprints
 - Continue analysis on granule ablation ELM triggering
- UI-UC
 - Commission HIDRA for liquid lithium tests
 - Contribute to FLiLi design, including adding LiMIT features
- UT-K
 - Continue tile analysis from tiles removed from EAST
 - Initiate design of dual band IR adapter for EAST IR camera
 - Initiate modeling of surface response to PMI

Plans for 2017 by institution (2)

• ORNL

- Initiate analysis on recycling changes induced by Li dropper
- Initiate micro-stability analysis, if profiles sufficient for high quality kinetic equilibria
- MIT
 - Build on tile analysis initiated by UT-K
 - Continue to develop F depth marker technique, and apply to EAST tiles when fully developed
- JHU
 - Continue SXR system upgrade, to improve SNR
 - Examine impurity behavior during Li experiments
- LANL
 - Lead development of core-shell micro-pellets
 - Contribute to granule ablation analysis, with emphasis on gas shielding effects from micro to macro pellets

Final Comments on the Collaboration

- Run time & paper sharing: excellent
 - EAST management was very generous with run time, valuing the development of their younger staff as they learned from US team (30 discharges allocated, ~ 150 conducted)
 - Equitable sharing of papers & presentations
- Progress on analysis: modest pace so far
 - * Note: 4 weeks of holiday since expt (2 in US, 2 in China)
 - Difficulty in analyzing data remotely; we will consider EAST visits focusing on data analysis
 - Profile diagnostics not always reliable why?
- Remote participation prospects: under investigation
 - Looking into viability of GA remote control room for our collaboration, as well as PPPL remote collaboration facilities
- Thank you for your support of this (nascent) collaboration!