

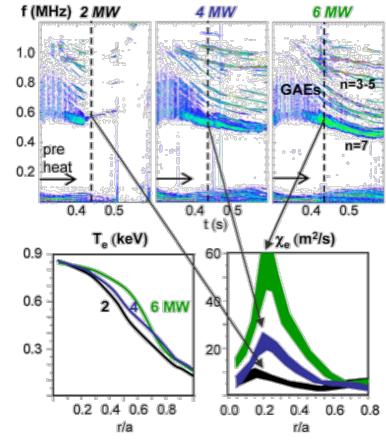
δn mode structure of CAEs & GAEs in NSTX via a novel reflectometer analysis technique*

N.A. Crocker, S. Kubota, W.A. Peebles (UCLA), E. D. Fredrickson, E. Belova, A. Diallo, B.P. LeBlanc (PPPL)

NSTX-U Physics Meeting PPPL

Aug. 7, 2017

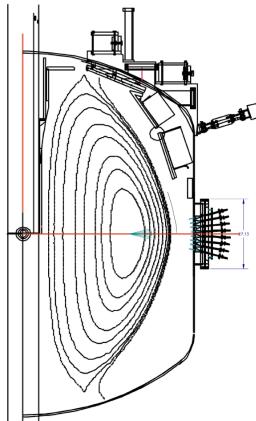
*Supported by US DOE Contracts DESC0011810, DE-FG02-99ER54527 & DEAC0209CH11466


Novel reflectometry analysis shows CAE/GAE δn too small to explain anomalous χ_e

- Compressional (CAE) and Global Alfvén eigenmodes (GAE) proposed to cause high anomalous core χ_e
- New multi-channel reflectometer analysis \Rightarrow more accurate δn internal amplitude and structure
- Core δn + theory [Gorelenkov NF 2010] for GAE modification of e⁻ drift orbits \Rightarrow GAEs too small to explain χ_e from TRANSP
 - Theory uses ORBIT modeling to determine χ_e dependence on amplitude and number of modes
- Measurement compared to HYM simulations
 - Measured and simulated GAE structures show similarities
- New δn + HYM Poynting Flux \Rightarrow CAE-KAW energy flux small

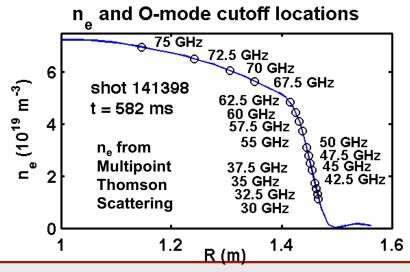
Motivation: CAEs & GAEs candidates for core energy transport in NSTX

- CAEs & GAEs excited by Doppler-shifted cyclotron resonance with beam ions [N. N. Gorelenkov, NF 2003]
- CAE & GAE activity correlates with enhanced χ_e in core [D. Stutman, PRL 2009; K. Tritz, APS 2010 Invited Talk; N. A. Crocker, PPCF 2011]
 - $-\chi_e$ from TRANSP modeling
- Two leading hypotheses:


[D. Stutman et al., PRL 102 115002 (2009)]

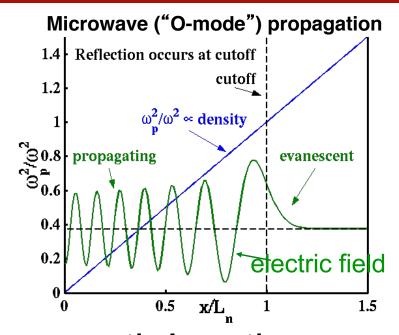
- Stochastization of e^- guiding center orbits enhance χ_e
- − CAE-KAW coupling = missing transport channel \Rightarrow TRANSP gets χ_e wrong

Reflectometers provide radial array of measurements


NSTX cross-section

- 16 channels in two arrays: "Q-band" & "V-band"
 - -Q-band: 30, 32.5, 35, 37.5, 42.5, 45, 47.5 & 50 GHz
 - -V-band: 55, 57.5, 60, 62.5, 67.5, 70, 72.5 & 75 GHz
- Arrays closely spaced (separated ~ 10° toroidal)
 - Separate launch/receive horn pair for each array
- Horns aimed perpendicular to flux surfaces ⇒ frequency array = radial array
- Cutoffs span large radial range in high density plasmas ($n_0 \sim 1 7 \times 10^{19} \text{ m}^{-3}$)

Launch and Receive Horns

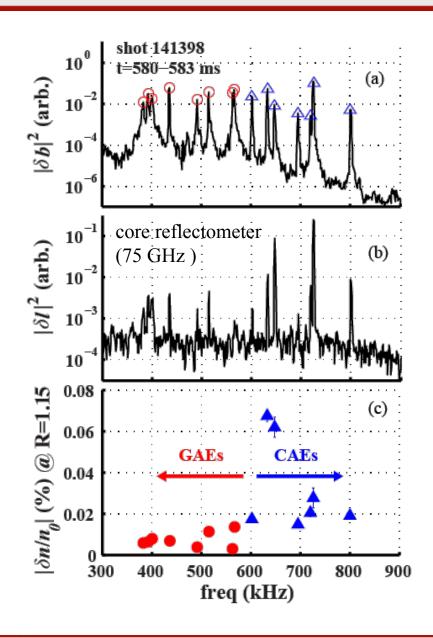

30-50 GHz

55-75 GHz

(not shown: horns

Reflectometers measure density fluctuations in plasma

- Microwaves reflect from plasma at "cutoff", where density high enough $(\omega_p = \omega)$
 - O-mode: $\omega^2 = \omega_p^2 + c^2 k^2$, $\omega_p^2 = e^2 n_e / \varepsilon_0 m_e$
 - microwaves reflect at k = 0


- Reflectometer measures microwave path length fluctuations (δl) caused by δn
- δl sensitive to cutoff motion, but δn along path contributes (a.k.a. "interferometer effect")
 - cutoff motion dominates as $k_r \rightarrow 0$ (e.g. external kink mode)

Reflectometer array measures δn of CAEs & GAEs

 Reflectometer array sees global modes identified as CAEs & GAEs

[N.A. Crocker, PPCF 2011]

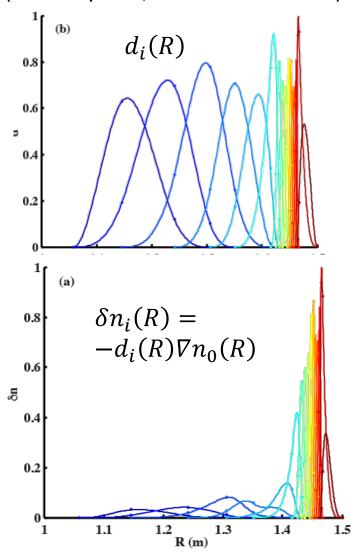
- New analysis gives $\delta n/n_0$; in core:
 - CAE: $\delta n/n_0 \sim 10^{-4} 10^{-3}$
 - GAE: $\delta n/n_0 \sim 10^{-5} 10^{-4}$
- δn obtained from reflectometer measurements "via synthetic diagnostic
- Reflectometer "signal-to-noise" improved via correlation with δb

δn determined via synthetic diagnostic

- Synthetic diagnostic used to model path length
 - WKB path length integral:

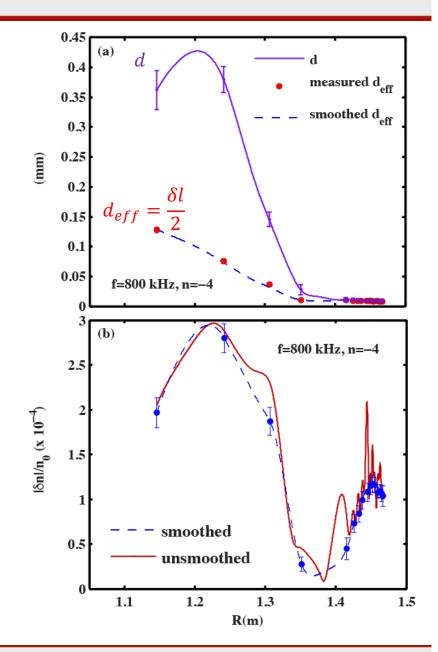
$$l = l_0 + \delta l = \int_{R_{edge}}^{R_{cutoff}} dR \sqrt{1 - \omega_p^2(R)/\omega^2}$$

$$\omega_p^2(R_{cutoff}) = \omega^2, \omega_p^2 = \omega_{p0}^2 + \delta \omega_p^2 \propto n_0 + \delta n$$

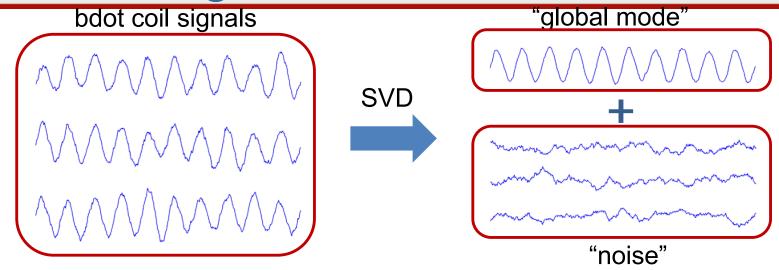

 Perturbation modeled with cutoff displacement (d) basis functions:

$$\delta n(R) = -\nabla n_0(R) \sum_i a_i d_i(R)$$

- cubic B-splines used for $d_i(R)$
- set of $a_i \Rightarrow \delta l_{fit}$ for all channels
- find of set of a_i to minimize


$$\chi^{2} = \sum_{j} \frac{\left(\delta l_{j,meas} - \delta l_{j,fit}\right)^{2}}{\sigma_{j,meas}^{2}}$$

Cutoff displacement basis functions (cubic "B-splines"; cutoff locations as knots)


δn determined via synthetic diagnostic

- Fit naturally yields cutoff displacement structure (d(R)) along with $\delta n(R)$
- Fit sensitive to noise in δl_{meas}
 - \Rightarrow use smoothed δl_{meas} for inversion
 - smoothing is low spatial filter
 - filtering smoothed δl is within uncertainty of δl_{meas}
 - can't know if short scale structure in δn is real, given uncertainties

Singular value decomposition gives better "global mode" δb

- global mode observed by 10 bdot coils (HN array)
- "filter" coil signals using SVD ⇒ global mode w/reduced noise
 - SVD factors space & time dependence of signal matrix:

$$b_{jk} = \tilde{b}_j(t_k) \to \hat{b}_{0j}b_{global}(t_k) + \epsilon_j(t_k)$$

- Steps before SVD ...
 - 1) bandpass filter coil signals to isolate mode

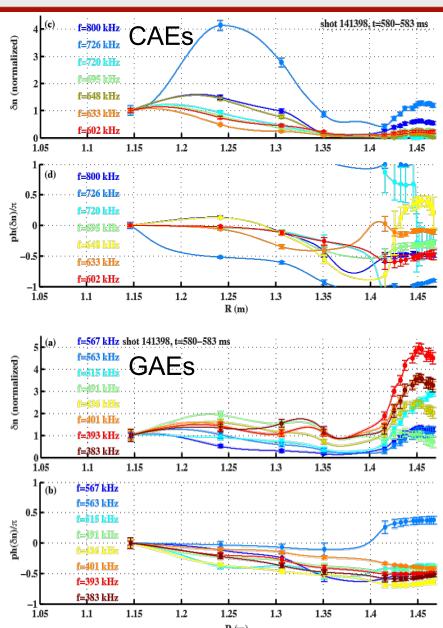
make signals complex
$$\Rightarrow$$
 spatial phase (e.g. $n\phi_j$) factors out automatically: $\tilde{b}_j(t) = A(t)\cos\left(\theta(t) + \theta_{0j}\right) \rightarrow \hat{\tilde{b}}_j(t) = \frac{1}{\sqrt{2}}A(t)e^{i\left((\theta(t) + \theta_{0j})\right)} = \frac{1}{\sqrt{2}}\int_0^\infty d\omega e^{i\omega t}\int_{-\infty}^\infty dt' \tilde{b}(t')e^{-i\omega t'}$

SVD finds global mode from eigenvector of signal correlation matrix

SVD solves factoring problem

$$\hat{b}_j(t_k) = \hat{b}_{0j}\hat{b}_{global}(t_k) + \hat{\epsilon}_j(t_k)$$

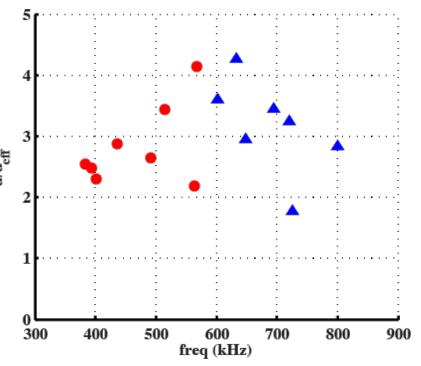
• by minimizing χ^2 :


$$\chi^2 = \sum_{j,k} \left| \hat{\bar{b}}_j(t) - \hat{b}_{0j} \hat{b}_{global}(t_k) \right|^2$$

ullet spatial coefficients $(\hat{\tilde{b}}_{0j})$ of global mode from eigenvector of correlation matrix with largest eigenvalue:

$$\mathbf{C}\hat{\tilde{\mathbf{b}}}_{0} = \lambda \hat{\tilde{\mathbf{b}}}_{0}$$
$$[\mathbf{C}]_{ij} = \left\langle \hat{\tilde{b}}_{i}(t) \hat{\tilde{b}}_{j}^{*}(t) \right\rangle, \left[\hat{\tilde{\mathbf{b}}}_{0}\right]_{i} = \hat{\tilde{b}}_{0j}$$

CAEs and GAEs have different δn structure

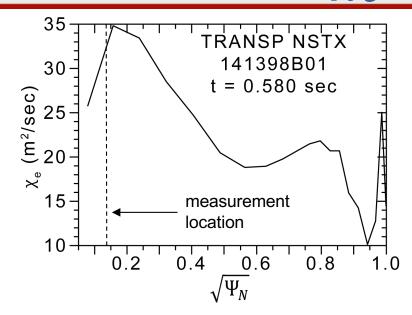

- CAEs have large, broad core peaks & small edge amplitude
- GAEs have low amplitude, broad structure in core & large edge peaks
- Note: large edge peaks can be caused by small edge radial displacements

New analysis gives 2–4 x larger cutoff displacement (d)

- Old analysis: δl attributed to cutoff displacement using "mirror approximation" \Rightarrow $d_{eff} = \delta l/2$
 - " d_{eff} " means "effective displacement"
- GAEs: for shear modes,
 cutoff displacement (d) ≈ plasma displacement (ξ_R)

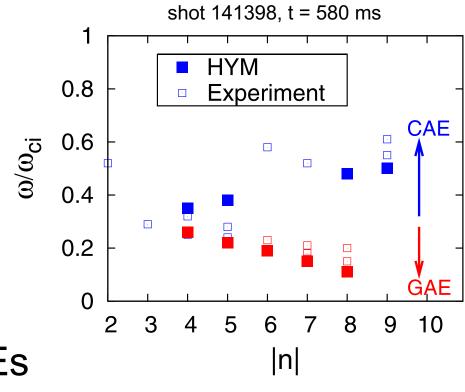
• CAEs: for compressional modes (if $k \gg L_n^{-1}$),

$$\nabla \cdot \mathbf{\xi} \approx \delta n / n_0$$


cutoff displacement ≠ plasma displacement

$$\delta n/n_0 = -d\nabla n_0 \Longrightarrow \frac{d}{\xi} \sim kL_n \gg 1$$

Measurements + theory \Rightarrow GAE amplitude & number too small to explain anomalous χ_e

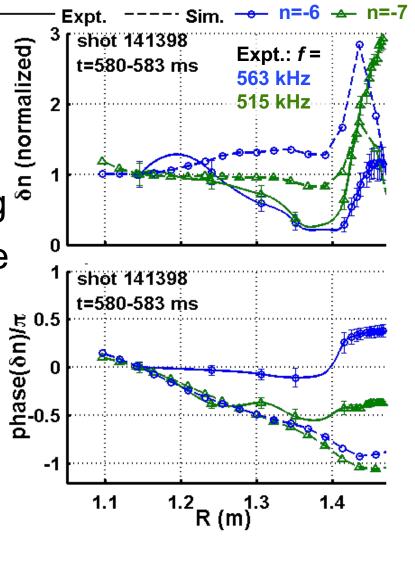

- Anomalous core χ_e (~ 35 m²/s) in
- 6 MW H-mode (141398, t = 0.58 sec)
 - TRANSP experimental transport analysis
- Theory for GAE-induced $\chi_e \Rightarrow$ modes needed to explain high χ_e [Gorelenkov NF 2010]
 - average amplitude: $\alpha \sim 4 \times 10^{-4} \ (\alpha = \frac{A_{\parallel}}{R_0 R_0})$
 - Strong nonlinear dependence: $\chi_e \propto \alpha^c$, c = 3-6
 - threshold at ~ 16 modes
- Expt.: 8 GAEs; $\alpha = (0.2 4.2) \times 10^{-4}$
 - -m from measurement: $m = q(k_{\parallel} + n), k_{\parallel} \approx \frac{2\pi(f nf_{ROT0})}{V_{A0}}$
- GAE amplitude & number too small

f (kHz)	n	m	d(mm)	α(x10 ⁻⁴)
383	-8	-2.2	0.11	0.3
393	-7	-1.1	0.12	0.7
401	-8	-2.0	0.15	0.5
436	-7	-0.4	0.13	2.0
491	-8	-0.6	0.07	0.9
515	-7	0.7	0.22	2.2
563	-6	2.4	0.06	0.2
567	-8	0.5	0.26	4.2

Initial comparison of HYM simulation & measurement promising

- Hybrid MHD (HYM) code simulates CAE structure & stability
 - -3D, coupled MHD fluid & fully kinetic fast-ions
 - realistic equilibrium
- Simulation & experiment compared for beam heated H-mode plasma
- Most-unstable CAEs & GAEs have f & n similar to observed experimental spectrum [E Belova PoP 2017]

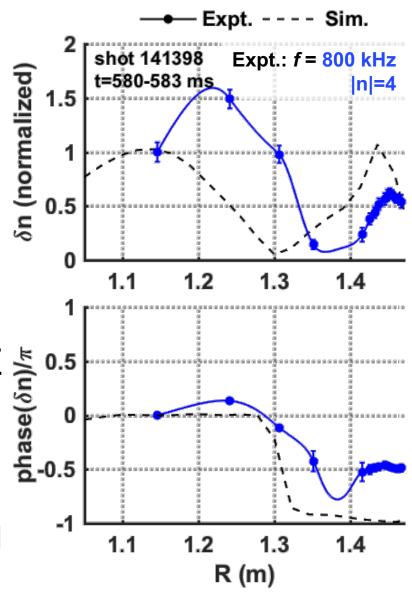
[E Belova PoP 2017]


Initial comparison of HYM simulation & measurement promising

 HYM simulation shows most unstable modes at n = 6 & 7 as counter propagating GAEs

 Similar (roughly) broad core structures & strong edge peaking

 Simulation shows stronger phase change across minor radius


- Further work needed: expect
 GAE structure to be sensitive to
 - B₀ structure included in HYM
 - Hall effect (finite ω/ω_{ci}) & toroidal rotation under development for HYM

Initial comparison of HYM simulation & measurement promising

- CAEs show similar (roughly) structure: broad core peaks & small edge amplitude
- CAE in simulation is copropagating. In experiment, counter-propagating.
 - Further work needed to understand
- Further work needed: expect CAE structure to be sensitive to
 - mod(B₀) structure included in HYM
 - Hall effect (finite ω/ω_{ci}) & toroidal rotation under development for HYM

Measurements + Simulation ⇒ Small CAE-KAW energy transport

- HYM: n = 4 CAE with $\frac{\delta b_{\parallel}}{B_0} \sim 6.6$ x $10^{-3} \Rightarrow$ CAE-KAW coupling transport: $P_{CAE-KAW} = 1.2$ MW [E Belova PoP 2017]
- Assuming $\frac{\delta n}{n} \approx \frac{\delta b_{\parallel}}{B_0}$ in core \Rightarrow 2 x 10⁻⁴ < $\frac{\delta b_{\parallel}}{B_0}$ < 7 x 10⁻⁴
 - In core, $k \gg L_n^{-1}$
 - $-\frac{\delta n}{n_0}$ measured @ R=1.15 m; $\frac{n_0}{n(R=1.15m)}$ =1.05
- CAE-KAW coupling transport $\propto \delta b_{\parallel}^2 \Rightarrow$ P_{CAE-KAW} = 0.03 MW total for all modes
 - Assume $P_{CAE-KAW} / \delta b_{\parallel}^2$ same for all modes
- In [E Belova PoP 2017], meas. + HYM $\Rightarrow \frac{\delta b_{\parallel}}{B_0} \sim 0.9 3.4 \text{ x}$ 10-3 by using d_{eff} to scale simulation ξ , but $d_{eff} \neq \xi$.

Conclusions

- New multi-channel reflectometer analysis \Rightarrow more accurate δn internal amplitude and structure
 - cutoff displacement larger than previous analysis
- Core δn + theory [Gorelenkov NF 2010] for GAE modification of e⁻ drift orbits \Rightarrow GAEs too small to explain χ_e from TRANSP
- Measurement compared to HYM simulations
 - Measured and simulated GAE structures show rough similarities
 - Motivates HYM development current under way
- New δn + HYM Poynting Flux \Rightarrow CAE-KAW energy flux small

Future work

- ORBIT modeling with experimental mode spectrum of GAEs & CAEs
 - GAEs modeling done. Not reported here. Doesn't change conclusion
 - ORBIT modified for better treatment of CAEs. Requires verifiction...
- Move synthetic diagnostic beyond 1D path integral ⇒ raytracing
 - system uses separate and receive antennae
- Better alternatives to SVD "filtering"?
 - independent component analysis
 - blind source determination
 - **–** ...
- Investigate role of compressional/shear coupling on δn (Hall effect, B₀ structure)
 - understand differences in simulation and measured structure
 - improve determination of electromagnetic amplitude ($\alpha \& \delta b_{\parallel}$) from δn

