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Modular Fusion Plants 
using High Field 

Spherical Tokamaks

Paul Thomas for the Tokamak Energy Team



Outline of Talk

• Introduction to Tokamak Energy
• “Modular Fusion”

• Drivers for Cost of Energy
• How HTS STs tick all the boxes
• Target fusion power module

• Tokamak Energy Programme
• ST25
• ST40 – Cu coils/High Field(<3T/2MA)
• HTS development
• Prototype fusion power module

• Thanks to PPPL for all the help and encouragement.
• Note similarity of FPM to PPPL FNSF
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The Tokamak Energy Solution

Spherical Tokamaks
Squashed shape
Highly efficient

High Temperature 
Superconductors

High current at high field

Fusion Power

smaller, cheaper, faster
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Competitive Landscape
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low physics 
risk

high physics 
risk

fast, small, 
Low capital

Slow, big
Capital intensive

➢ In the last decade privately 
funded companies have 
emerged 

➢ Prompted by a lack of 
progress in mainstream 
publicly funded fusion and 
the recognition that fusion 
needs to happen sooner

➢ $500M – 1Bn of investment

➢ Competition pursuing high 
risk, low technology 
readiness, designs that 
require scientific validation

➢ The Tokamak Energy 
approach is alone in having 
established theoretical and 
experimental foundation

4



Tokamak Energy Ltd.
M Nightingale

V Chuyanov
P Noonan

J Hugill

A Sykes
D Kingham

M Gryaznevich

J Connor
J Lister P Buxton

V Shevchenko

J Hunt

A Costley



Paul THOMAS, PPPL, 29th August 2017 6

• For any fusion (or fission) power plant, servicing the capital 
debt is the primary annual charge ~ 90% of total.

• Obviously then, the CoE for fusion is minimised by:

• Minimising the capital cost

• Maximising the electrical output

• Maximising availability

• To set the scale, a typical CoE for fission is 140 $/MWh 
(source Wood MacKenzie).

Cost of Electricity (CoE = <cost/MWh>)
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Minimising the Capital Cost

• STs permit a high beta operating point with fBS ~ 1

• Capital cost of modular reactors by off-site manufacture in 
series, shared services, including hot-cell, and shared 
heating and current drive.

• T,max  (1/q).(1+2).A-2

• T,fbs=1  (1/q)2.(1+2).A-1.5

• Domains where fBS = 1 is stable 
are indicated with red arrows.

• ST has T < 10%, whereas “JET” 
has T < 1.4%

• STs “readily” stabilized at  ~ 3.

q = 3

ST

JET

R

b

a
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Maximising Electrical Output

• Minimise the recirculating power by operation at fBS ~ 1 
during burn, which STs permit.

• High Temperature Superconductors at 20K reduce cryo-
power by a factor ~5 per Watt absorbed in coils, 
compared with Nb3Sn at 4K.

Pgrid = (.Qplant – 1).(Pservices + PCD)

Qplant = Pfusion / (Pservices + PCD)

ηwp.CD = 0.07-0.14 MA/MW for 
as-designed ITER systems.

Pservices

PCD

.Pfusion
PGrid
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System “Physics”
current drive 
efficiency CD

Wall-plug 
efficiency ηwp

(ITER design)

Product
ηwp.CD

Product
ηwp.CD with
improvements 

ECCD 0.15 0.44 (upper 
value)

0.07 0.14 (gyrotron at 70% 

- K Sakamoto)

ICCD 0.3-0.4 
(matching?)

0.48 0.14 - 0.19 HH FWCD ???

NBCD 0.4-0.45 0.32 0.13 – 0.14 0.22 – 0.25 
(photon neutraliser)

• No existing Heating and Current Drive system is sufficiently 
efficient for any concept and Pcd availability must much better 
than that for the plant as a whole.

• This argues strongly for our assumption that fbs~1 during burn

External current drive is inefficient
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Maximising Availability

• This demonstrates the benefit of having a reserve module.
• The service timescale is realistic for HTS ST modules because of 

relatively small weight and size of components.

Plant availability versus 

DPAs at which scheduled 

maintenance should occur:

(i) for standard design without 

a reserve module; and

(ii) for modular designs with 11 

and 5 modules (Pwall = 1 

and 2 MW/m2.).
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CoE for Modular Fusion

CoE = 56 $/MWh for 1st plant of a kind

• Cost algorithms used in previous 

reactor studies. Made in 2009 

USD. 10+1 modules for 100% 

plant factor. Series manufacture 

and shared balance of plant 

reduces capital cost.

• Sensitivity to neutron wall load, 

service interval and time was 

studied.
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CoE for Modular Fusion

Parameter Value

Impurities 4% He, 2% H

T mean keV 14 

Aspect ratio 1.7

Fusion power MW 172

Blanket energy mult. factor 1.34

Thermal power MW 218.4

Total thermal efficiency 35. 4%

Electrical power MW 80.7

Plasma major radius m 1.6

Plasma minor radius m 0.94

Elongation 3

Triangularity 0.5

Plasma volume m3 80

Parameter Value

Wall surface m2 116

Density 1E20 /m3 0.97

Plasma energy MJ 51.13

Toroidal magnetic field T 3.17

Plasma current MA 6.7

Radiation losses MW 2.2

Energy confinement time sec 1.6

beta toroidal % 10.7%

beta poloidal 2.6

Neutron wall loading MW/m2 1.18

Neutron Shield thickness, m 0.4

Maximum value of TF field T 19.6

TF coil MA turns 25.4



Paul THOMAS, PPPL, 29th August 2017 13

Overall Plant Costs

Item Cost (11 modules) 
(M$)

fusion modules 2034.9 (261.8 for first)

reactor plant 455.1

conventional plant 
& bdgs

974.1

Direct Capital 3464.1

Indirect Capital 
Costs

1558.8

Total 5022.9

• Including:
• 5 years construction
• 30 years operation
• 10 years decommissioning
• 5% interest rate

• Capital Cost Charge = 359M$
• Net electrical output = 767MW

 CoE = 56$/MWh
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Modular Fusion Power Plants

Based on CoE compelling arguments for fusion plants based on:

Spherical Tokamaks
• ~100% bootstrap current to reduce recirculating power
• High beta operating point to reduce capital cost
• Confinement has potential for ignited operation at moderate Pfus

High Temperature Superconductors
• 20K operation to reduce recirculating power for refrigeration
• High critical field (>20T) at reasonable J  high Pfus relative to size

Fusion Power Modules
• Reduced capital cost of modules due to “series manufacture”
• 100% availability with reserve module to maximise revenue
• Shared services and CD systems further reduce capital cost.



Tokamak Energy Program

HTS engineering

ST25 Cu

ST150~200

ST40 Cu

1. Demonstrate scientific viability of STs
2. Develop HTS technology towards commercial viability
3. Combine STs and HTS in a series of engineering prototypes

ST40 magnetTest coilsST25 HTS

Other engineering (Divertor, shielding, power conversion, breeding …. )
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ST25-HTS

• ST25-HTS constructed in 
collaboration with Oxford 
Instruments

• 200K operation – 6 limb 
cryostat

• ST25 equipped with 
3kW/18MHz

• Low current/temperature 
but tokamak configuration.

• Demonstrated HTS tokamak 
for the first time. 



ST25-HTS: Milestones  Publicity  Funding
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ST40: 3T, 2MA Cu Coils

• R0=0.4-0.6m

• R/a=1.6-1.8, =2.5

• Ipl=2MA, Bt=3T

• tpulse~1-10sec



ST40 building layout



First power supplies in place

• ST40 power supply units 
(PSUs) based on 
ultracapacitors

• TF first to arrive (70 MJ), 
installed and tested

• To be expanded to 250kA and 
175MJ to provide Bt=3T

• MC p/s commissioned

• BvL p/s being commissioned



Merging compression coils

Required for start up – our solenoid is fairly small
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Merging-compression

Ip imposed from START and MAST 
scaling

Merging-compression coil

Vertical field to control X-
point position between 
MC coils

Total induced current in the vessel



Inner Vacuum Case

Inner vacuum case and centre columnPaul THOMAS, PPPL, 29th August 2017 23



TF coils
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ST40 TF Coil Trial Fit
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ST40 TF Coil Detail

Lapped contacts Flexible couplings



Diagnostics

• Machine monitoring: 
vacuum, mass spectrometer, 
fast ion gauge, 
thermocouples, position 
monitoring, TF joint testing

• Magnetics: Bp&Bt probes, 
flux loops, Rogowski coils, 
saddle loops, diamagnetic 
loops

• Cameras: Fast high resolution 
visible (500&80 fps), IR



Diagnostics

• Multifoil X-ray camera (4x3x20 channels), UV/visible 
spectrometer w/ impurity Doppler, interferometer (195 μm, 
2 chords), hard X-ray spectrometer

• Planned: neutron spectrometer, NPA, ECE imaging, ECE 
Doppler radiometer, Langmuir probes & multi-channel TS



ST40 in parameter space

• ST40 plasma can be a test 
for collisionality
confinement scalings

(1) τE~ν*-0.8

(2) ρ*ST40= ρ*MAST

(3) βST40= βMAST

ST40
HNSTX=1

ST40
HITER=1

MAST

MAST

Electron neoclassical limit for ST40

IPB(y,2) : BτE,th ∝ (ν*)0.01(ρ*)-2.73β-0.88A-0.74q-3

MAST : BτE,th ∝ (ν*)-0.82(ρ*)-2.5to-3β-0.5to0q-0.85



Construction,
Partial assembly
and first plasma
15 M degrees 
milestone attempt

Commissioning 
for Day 1 
specs,
15 M degrees 
milestone

Experimental 
programme 1
100M degrees 
milestone attempt

m/c early tests
Commissioning 
of P3 coils and 
PSU; attempt of 
b/d  around coils

Experimental 
programme 2 
100 M degrees 
milestone

ST40 assembled 
with new TF 
post 1.2T; PS 
coils and PSUs 
for Day 1 specs.
Full OVC. Sol, 
BVU, BVL, Div
coil.

IVC with both 
m/c coils, TF 
assembled for 
10kA  with perm 
24th limb, BVL, 
OVC central belt;
IVC with new 
tube

1.2T/1.5MA  
supported by 
PSUs and control 
system. All PF 
coils but SX. 

IVC with P3 coils;
10-6, old central 
tube; P3 PSU 
430kAt; GDC in 
He, puff and 
pumping as in 
2016; min 
magnetics and 
other diagn.

ST40 experimental programme

30
/1
4

May 2017 Q3-4 2018

Stage one Stage two

Q4 2017 Q1-2 2018 

TF trial fit
BvL and new 
MC coil and p/s 
tests

July-August 
2017

2.4T/1.5MA
All PF coils. 
New IVC with 
divertor and 
passive plates; 
AIST NBI; Li, 
boronisation, 
advanced 
diagnostics

Main hardware requirements:Completed



HTS Magnet Development

Even with shielding we can have
high BT in plasma
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HTS key technologies

~100 kA cable design
• AC losses
• % copper content
• Cooling

Quench protection
• Current sharing
• Detection
• Dump

Joints
• Size, shape, position
• Heatload - many or 

few ?

Cryogenics
• Neutron heating
• Joint heating
• Suspension
• Vacuum vessel

Power supplies
• Current leads
• Dump circuits
• Cold rectification ?

Mechanical design
• PF / TF coil locations
• Forces
• Demountable coils ?

IC degradation
• Neutron damage
• Thermal cycling
• Mechanical
• Fatigue

REBCO conductors
• IC surface
• Boundary resistance
• Tape construction
• Quality / variability
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TRLs for HTS Coil Development
Targets

as of 
Feb-17

2017 
target

2018 
target

2019 
target

Fusion 
demo

D-T 
reactor

Cable design 3 5 6 6 8 9

Joint design 2 4 5 6 8 9

REBCO tape characterization 3 5 6 6 8 9

Core model 2 4 5 6 8 9

TF EM model 3 5 6 7 8 9

PF EM model 1 5 6 7 8 9

Integrated magnet EM model 3 5 5 6 8 9

Magnet mechanical design 1 3 4 6 8 9

Quench Detection system 2 5 6 7 8 9

Quench Protection system 2 5 6 7 8 9

PSU 2 4 5 6 8 9

Current leads 2 3 5 6 8 9

Cryostat 2 3 5 6 8 9

Cryoplant 2 3 5 6 8 9
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Prototyping in “relevant environment” 
completed.



• HFS radial build determines the major radius of a device that will 
produce a significant fusion power.
• Practical average current density in centre rod coming out at ~ 

100A/mm2

• Need >30-40cm neutron shield to keep HTS temperature < 300K

• Space needed for thermal shield, vacuum vessel, PFC and gap to plasma.  

• So far, scoping studies have shown that R ~ 1.8-2m and Bt ~ 3.5-
4T is consistent with all the constraints, except…..

• Fusion power at ignition is such that the divertor power handling 
is likely to be as much of a technical challenge as HTS magnets.

• Supply chain “challenged” by length (~2000km) of tape needed.
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Fusion Demonstration



Operating Range for FPD
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Future plans

• Move to new site (several options considered, incl. Culham) 

• ST40:
• Add divertor and LN cooled Cu vertical stabilization plates, and 

satisfy the requirements for tritium operation

• Neutral beam injection (NBI): 2 systems under consideration, one to 
assist start-up (already during Phase 1), one for heating during flat-
top in DD

• ECRH/EBW project started

• Likewise for pellet injector

• Following test magnet programme, prototype HTS TF magnet

• Conceptual design of Fusion Demonstration device has 
started and will be completed early next summer.



• Working in a private company is different!

• The Modular Fusion concept provides an easily 
articulated and justifiable strategy for the business.

• Milestones and publicity often seem naïve to fusion 
insiders and are a cause of antagonism.

• HTS IP values TE at many times the total investment.

• Investors content to balance this return against risks 
associated with fusion science/technology.

• Real test will be when TE calls for ~£1bn for fusion 
power demonstration – 2000km REBCO tape long-lead
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Concluding Remarks


