Validation of Kinetic Turbulent-Neoclassical Theory for Edge Intrinsic Rotation in DIII-D Plasmas

by

Arash Ashourvan ${ }^{1}$

in collaboration with
B.A. Grierson ${ }^{1}$, T. Stoltzfus-Dueck ${ }^{2}$, S.R. Haskey ${ }^{1}$, and D.J. Battaglia ${ }^{1}$ 1Princeton Plasma Physics Laboratory ${ }^{2}$ Princeton University

Toroidal Rotation is Beneficial to the Performance of Tokamaks

- Rotation and shear improve confinement and stability

C Chrystal, PoP (2017)
 strongly influenced by intrinsic sources ${ }^{\mathbf{1 , 2}}$.
${ }^{1}$ BA Grierson IAEA (2016)
${ }^{2}$ C Chrystal PoP, 24, 056113 (2017)

Capturing the Physics of Edge Momentum Transport has been a Challenge for Predicting the Rotation Profile

Previous Related Theory Models:

- Neoclassical models : drastically under-predict momentum transport i.e. $\chi_{\varphi} \ll \chi_{i}$. Experiments show $\chi_{\varphi} \sim \chi_{i}$, suggesting turbulence dominated transport of momentum.
- Turbulent models : primarily focus on core, use quasilinear formulation to identify residual stress, momentum pinch.
- Orbit loss models : neglect turbulent transport which can strongly modify the loss-cone-predicted rotation.

Stoltzfus-Dueck Theory Model:

- Predicts the value and direction for intrinsic rotation at the pedestal top.
- Prediction can be used as BC for predictive simulations.

Main Results

A) Intrinsic rot. Theory (T. Stoltzfus-Dueck):

- for moderate β_{N} theory prediction in reasonably good agreement with exp. pedestal top rotation
- At high β_{N} exp. rotation degrades with increasing β_{N}, in contrast with theory prediction

Main-ion Ped. Top Rotation

Intrinsic Rotation Theory Model

Stoltzfus-Dueck Model¹ Predicts Value, Direction of Velocity at Core-Edge Boundary

How is the intrinsic rotation generated?

- For typical outboard ballooning turbulence:
ctr-lp passing ions experience a stronger drift-orbit-averaged turbulent diffusion than co-Ip ions.
\rightarrow ctr-lp ions are depleted at a higher rate
\rightarrow co-lp intrinsic rotation of the plasma

A Central Result: Steady State Momentum Balance Equation at the Pedestal Top

Density flux
Angular momentum flux

Co-lp torque applied to plasma core

Outward momentum flux through pedestal

- Π (Rotation drive) represents a "residual stress".
- Intrinsic rotation is a special case:

$$
\tau=0 \longrightarrow v_{\mathrm{int}}=-\frac{\Pi}{\Gamma_{p}}
$$

Model Yields An Explicit Formula for Flux-Surf.-Avg. Main-ion Toroidal Velocity at Pedestal Top

Passing fraction $f_{\text {pass }} \sim 29 \%$ for typical DIII-D ped. top

Theory Prediction edge safety factor

$$
v_{\mathrm{int}} \approx f_{\mathrm{pass}} \times 0.104\left(0.5 d_{c}-\bar{R}_{X}\right) \frac{q}{L_{\widetilde{\phi}}(\mathrm{cm})} \frac{\left.T_{i}\right|_{\mathrm{pt}(\mathrm{eV})}}{B_{T}(\mathrm{~T})} \mathrm{km} / \mathrm{s}
$$

Ballooning in/out asymmetry
normalized X-pt major radius:

$$
\bar{R}_{X}=\frac{2 R_{X}-\left(R_{\text {out }}+R_{\text {in }}\right)}{R_{\text {out }}-R_{\text {in }}}
$$

radial decay length of potential fluctuations

- Strong dependence on X-pt location (Validated on TCV for Ohmic L-modes ${ }^{1}$)
- $v_{i n t}$ captures observed features of edge intrinsic rotation:
- Reproduces Rice scaling ($q / B_{T} \sim 1 / l p$)
- Predicts co-lp vel. for typical inboard X-pt

Developing the Rotation Database

Exp. Main-ion Rotation is Inferred From Impurity Measurements

- $\Omega_{c}<\Omega_{D} \rightarrow$ Impurity rotation not suitable for theory validation.
- Main-ion rot. (Ω_{D}) inferred from measured impurity rot. on LFS $\left(\Omega_{c}\right)$ by analytically calculating their Neoclassical offset. ${ }^{1}$

- Ω_{c} corrected for PS flow to obtain rigid rot.
- Ω_{D} validated with direct CER measurements for a limited number of discharges

Validation of Model is Performed Across Wide Range of Plasma Conditions

Database

Main-ion, flux surface averaged ped. top rot.:
44 low-torque discharges (\mid T|<0.5 N.m), ~14000 CER measurements, L and H mode, β_{N} up to 2.5, USN and LSN, Forward and Reverse Ip, ECH and balanced NBI heating

- Potential fluctuations measurements not available ; $L_{T e}$ used as a substitute for L_{ϕ}. (from experiments $L_{\phi} \sim 1-2 L_{T e}$)
- Pedestal top radial location identified from fit to T_{e}
- X-pt poloidal location is approximately constant for entire database, with X-pt on the inboard side.

Theory Predicts Monotonic Increase in Rotation with β_{N}

- Theory prediction is independent from rotation measurements.
- $d_{c}=1$ for moderate out-board ballooning used for whole database.
- Co-lp spin-up at L-H transition is captured by the increase in Ti| $\left.\right|_{p t}$ and decrease of L_{Te} resulting from steepening of gradients.

for Moderate β_{N}, Theory in Reasonably Good Agreement with Experiments

- For L-mode further fine-tuning can be made by fitting for the optimum ballooning parameter $d_{c},\left(d_{c} \sim 1.6\right.$, stronger ballooning for L-mode than H mode).
- For ITER baseline, theory predicts a ped. top intrinsic rotation of $\sim 4 \mathrm{kRad} / \mathrm{s}$. (Chrystal PoP 2017 predicted ~ 7 kRad/s).

at High β_{N}, Intrinsic Theory Does Not Predict the Observed Rotation Degradation

- Disagreement at high $\beta_{N} \rightarrow$ problematic if model will be used for high performance conditions.
D)PPPL

Why is there a disagreement at high β_{N} ??

Parameter Range with Large Disagreement with Theory is Isolated at High $\mathrm{P}_{\mathrm{NBI}}$

- $P_{\text {NBII }}>4$ MW rotation velocities are lower than $\mathrm{P}_{\mathrm{NBI}}<4 \mathrm{MW}$.

This Database Connects with Previous Mystery of Main-Ion Rotation Degradation at High $\mathrm{P}_{\mathrm{NBI}}$ in DIII-D

- D^{+}rotation degradation at high β_{N} is consistent with previous reports in DIII-D for He^{2+}.

For High $\mathrm{P}_{\mathrm{NBI}}$, Large Ctr-Ip Torque in the Edge (>1 N.m) Leads to Rot. Degradation

$$
\begin{gathered}
\mathbf{j}_{\mathbf{f}}=-\mathbf{j}_{\mathbf{i}} \longrightarrow \begin{array}{l}
\mathbf{j}_{\mathbf{i}} \times \mathbf{B} \text { torque } \\
\text { on plasma }
\end{array} \\
\frac{d}{d t} \int \rho R V_{\varphi} d V=-\dot{N} e \Delta \psi \quad \begin{array}{l}
\text { - Transport and } \\
\text { friction losses }
\end{array}
\end{gathered}
$$

- In the absence of collisions canonical angular momentum is conserved

$$
p_{\varphi}=m_{i} R v_{\varphi}-e \psi
$$

- Radial displacement:

$$
\begin{aligned}
& \text { co-lp } \quad e \Delta \psi=-m_{i} R_{0} v_{\varphi 0}<0 \quad \text { (banana orbit) } \\
& \text { ctr-Ip } e \Delta \psi=m_{i} R_{s} v_{\varphi s}-m_{i} R_{0} v_{\varphi 0}>0 \text { (lost orbit) }
\end{aligned}
$$

When both directions of NBI are applied and are "nominally balanced", the total torque absorbed by the plasma can be net ctr-lp, due to fast ion prompt loss ${ }^{1}$

TRANSP/NUBEAM Calculation Performed for Entire Database

Discharge 157557:
$\beta_{\mathrm{N}} \sim 1.2 \quad$ (moderate)
$\mathrm{P}_{\mathrm{NBI}} \sim$ 3.25 MW
Discharge 157906:
$\beta_{\mathrm{N}} \sim 2 \quad$ (high) \rightarrow degraded rot. $\mathrm{P}_{\mathrm{NBI}} \sim$ 6.5 MW

- Torque deposited in core(edge) is co-lp (ctr-lp)
- Note: NBI alternates between co\&ctr; at CER measurement times prompt edge torque can be larger or smaller than average.

Vol. integrated absorbed torque (N.m), calculated by TRANSP

Calculating the Rotation With Finite Torque is Required for Both Validation and Future Predictions

- Simplified momentum evolution equation for the edge:

$$
\frac{d \omega_{\tau}}{d t}=-\frac{\omega_{\tau}}{t_{\phi}^{\text {edge }}}+\frac{\tau_{\text {edge }}}{I_{\text {edge }}} \quad \Longrightarrow \omega_{\tau}(t)=\int_{-\infty}^{t} \mathrm{e}^{-\left(t-t^{\prime}\right) / t_{\phi}^{\text {edge }}} \frac{\tau_{\text {edge }}\left(t^{\prime}\right)}{I} d t^{\prime}
$$

- Edge momentum transport time: $t_{\phi}^{\text {edge }} \sim \frac{L_{\mathrm{ped}}^{2}}{\chi_{\phi}^{\text {edge }}} \approx \frac{L_{\mathrm{ped}}^{2}}{\operatorname{Pr} \chi_{i}^{\text {edge }}}$
- Theory of turbulent transport predicts χ_{i} and χ_{φ} to be comparable: the Prandtl number, $\operatorname{Pr}=\chi_{\phi} / \chi_{i}$ is expected to be close to unity

$$
\chi_{\phi}^{\text {edge }} \approx \operatorname{Pr} \chi_{i}^{\text {edge }}
$$

- Pr estimated analytically ${ }^{1}$; a single value used for DB
- $\chi_{i}^{\text {edge }}$ is estimated using $Q_{i}^{\text {edge }}$ (heat flux through edge) computed by TRANSP.

For High $\mathrm{P}_{\mathrm{NBI}}$, Calculated Net Torque in the Edge $\left(\tau_{\text {edge }}\right)$ is Ctr-lp and Large (>1 N.m)

Net torque in the edge:
(using TRANSP/NUBEAM)

Ctr-lp torque is collisionless $\mathbf{J} \times \mathrm{B}$, promptly absorbed in edge.

Co-lp torque is deposited in the core, transported to the edge slowly $\mathbf{t} \sim t_{\phi}^{\text {core }}$; smoothed out in the process.

prompt averaged over $t_{\phi}^{\text {core }}$

For $P_{\text {NBI }}>4$ MW, while calculated torque ejected from beam holes is \mid tinj|< 0.5 , net edge torque can be <-1 N.m

Calculated Ctr-lp Rotation Shift is Large for High $\boldsymbol{\beta}_{\mathrm{N}}$

- Large ctr-lp torque at high $P_{\text {NBI }}(\sim-1 \mathrm{~N} . \mathrm{m}) \Longrightarrow \omega_{\mathrm{T}} \sim-30 \mathrm{kRad} / \mathrm{s}$
- Finite rotation change for moderate- $\beta_{\mathrm{N}} \mathrm{H}$-mode (\sim - $7 \mathrm{kRad} / \mathrm{s}$)

NBI Torque Correction to Intrinsic Theory Improves the Predicted Rotation

- Torque corrected rotation (red) is much closer than intrinsic values (blue) to the experimental rotations ($\omega_{\tau} \sim-30 \mathrm{kRad} / \mathrm{s}$).

- Torque correction brings the theory prediction for H -mode closer to the experimental values ($\omega_{\mathrm{T}} \sim-7 \mathrm{kRad} / \mathrm{s}$).

A New Rotation Model, Tested in Low-Torque DIII-D Plasmas, is Available for Predictive Simulations

- Pedestal top rotation prediction shows good agreement for DIIID low-torque rotation database.
- Model now includes finite NBI torques \rightarrow uses simple inputs available to modeling codes.
- Future Research :
- Using direct measurements of turbulent fluctuation profiles, ballooning (in/out asymmetry) for L- and H-mode, for more accurate predictions.
- Exploring ELMs and 3D fields effect on momentum/rotation.
- Exploring the intrinsic rotation generation in higher collisionality regimes

Supplemental Slides

Rotation degradation - Current Dependence

Forward Ip discharges 157910 and 164988 have the lowest ω_{T}, comparable to the values in moderate β_{N} range
$>$ Edge CER measurements use the 330 beams.

330 beam is in positive tor. direction; contributes a co-lp(ctr-lp) torque when Ip is directed forward(reverse).

Discharge 164988 has largest Ip ~1.25 MA; smaller radial steps result in less orbit loss.

Important to Correct For Difference Between Impurity and Main-ion Toroidal Rotation

- Main-ion rotation > carbon rotation, consistent w/ direct CER.
- L-to-H transition at $\beta_{\mathrm{N}} \sim 0.75$.

Impurity and Main-Ion Both Show Degraded Rotation at High β_{N}

- Rot. increases in L-to-H transition.
- From medium to high $\beta_{N} \mathrm{H}$-modes (crossing $\beta_{N} \sim 1.7$) rot. decreases for both carbon and deuterium (due to finite NBI edge torque)

DPPPL

Exp. Main-lon Rotation is Independent of Ped. Top Density

Exp. main-ion rotation

$\beta_{N}<0.75($ L-mode $)$
$0.75<\beta_{\mathrm{N}}<1.7\left(\right.$ moderate $\left.\beta_{N}\right)$
$\beta_{\mathrm{N}}>1.7\left(\right.$ high $\left.\beta_{\mathrm{N}}\right)$

- For each β_{N} range in database, main-ion rotation is independent of pedestal-top main-ion density.
- Theory prediction is also independent of density.

Parameter Range with Large Disagreement with Theory is Isolated at High $\mathrm{P}_{\mathrm{NBI}}$

- Good agreement at moderate $\mathrm{P}_{\mathrm{NBI}}$

- For high $\mathrm{P}_{\mathrm{NBI}}$ theory prediction is significantly larger than exp.

DPPPL

