<u>Automated Identification of MHD Mode</u> <u>Bifurcation and Locking in Tokamaks</u>

S.A. Sabbagh¹, J.D. Riquezes¹, R.E. Bell², Y.-S. Park¹, C. Myers², L.A. Morton³

¹Department of Applied Physics, Columbia University, New York, NY, USA ²Princeton Plasma Physics Laboratory, Princeton, NJ, USA ³Oak Ridge Associated Universities, Oak Ridge, TN, USA

NSTX-U Physics Meeting

Supported by US DOE grant DE-SC0016614

Automated Ident. of MHD Mode Bifurcation/Locking in Tokamaks – S.A. Sabbagh, et al. (11/30/17)

An algorithm has been created to automatically identify aspects of MHD activity supporting disruption prediction

Motivation

- Identify time-evolving rotating MHD instabilities in a tokamak plasma
- Automate detection of key mode characteristics with the purpose of connecting them to plasma disruptions
- Create portable code for general use on tokamaks as a module for the disruption event characterization and forecasting code (DECAF)

Outline

- Standard analysis of rotating MHD modes by FFT
- Automation of MHD characteristics analysis for DECAF
- Testing on various plasma scenarios
- Simple torque balance model of bifurcations to test in DECAF

Automated mode identification starts with FFT analysis of magnetic probe data

Mirnov signal & FFT amplitude

 Consecutive FFTs give the phase and amplitude of a signal in frequency and time

Automated Ident. of MHD Mode Bifurcation/Locking in Tokamaks – S.A. Sabbagh, et al. (11/30/17)

NSTX-U

Toroidal mode numbers are determined by toroidal phase matching of peaks in FFT

- Input data from a toroidal array of magnetic probes
- Toroidal mode number determined by best match to measured phase
- Created a portable Python code for general use in tokamaks (e.g. NSTX/-U, KSTAR, etc.)
 - Diagnostic configuration files allow easy setup for any tokamak

Principal components can be optionally selected by SVD

- SVD allows for decomposition of signals into principal components
 - Can be used to pre-condition data for analysis (e.g. noise reduction, or to analyze dominant activity
 - Capability to be tested in DECAF to determine advantages

Automated Ident. of MHD Mode Bifurcation/Locking in Tokamaks – S.A. Sabbagh, et al. (11/30/17)

Discrete modes are processed as objects, key mode characteristics are determined and tracked

- Frequency vs. time determined for continuous mode activity defines an object, fit for analytic determination of f'(t)
- Quasi-steady state, rotation (bifurcation), and mode locking are automatically flagged for use by the DECAF code

Algorithm tracks each mode as desired, searching for bifurcations, locking

Automated Ident. of MHD Mode Bifurcation/Locking in Tokamaks – S.A. Sabbagh, et al. (11/30/17)

Examine mode locking in NSTX-U H-mode plasma

 Experiment switching NBI and using beam blips leads to mode lock at insufficient plasma rotation

Automated Ident. of MHD Mode Bifurcation/Locking in Tokamaks – S.A. Sabbagh, et al. (11/30/17)

NSTX-U

Mode bifurcation and locking identified well in NSTX-U H-mode plasma

Magnetic spectrogram

Mode object and event analysis

 Code shows two n = 1 modes match frequency near time of bifurcation, apparently separate at mode lock

Automated Ident. of MHD Mode Bifurcation/Locking in Tokamaks – S.A. Sabbagh, et al. (11/30/17

Richer mode activity somewhat more difficult to handle <u>– concentrate on most dangerous modes</u>

- Code to ignore n = 3, 4 modes here due to high frequency, discontinuity
- What will happen to frequency-separated n = 1 activity?

<u>n = 1, 2 modes are tracked, bifurcations and locking</u> <u>identified</u>

- Frequency separated n = 1 modes ~ 0.8s 1.0s sometimes joined
- Good identification of bifurcation and lock (most important)

NSTX-U

Sawteeth reveal that bifurcation algorithm needs somewhat greater intelligence

- Algorithm does identify sawtooth activity as continuous
- Inflections in frequency presently interpreted as bifurcations (to be fixed)

Simple physics model for mode rotation evolution / mode lock forecasting derived, can be tested in DECAF as next step

 Model derived to allow island drag for both "slip" and a "no slip" condition

$$T_{mode} = \frac{k_2 \Omega}{1 + k_3 \Omega^2}$$

Model based on R. Fitzpatrick et al., NF **33** (1993) 1049

- Simple "Ω₀" defines steady state
 - Robust way to define this using the automated code?
- Simple "Ω₀/2" defines bifurcation point

$$\frac{d(I\Omega)}{dt} = T_{aux} - \frac{k_2\Omega}{1 + k_3\Omega^2} - \frac{(I\Omega)}{\tau_{2D}}$$

Automated Ident. of MHD Mode Bifurcation/Locking in Tokamaks – S.A. Sabbagh, et al. (11/30/17

<u>Automated characterization of rotating MHD modes is a</u> <u>key capability for disruption analysis, forecasting goal</u>

- Automated algorithm developed to characterize rotating MHD modes, spot their bifurcation and locking
 - A critical capability to process general tokamak databases (ubiquitous rotating MHD activity)
- General algorithm in portable Python code discriminates toroidal mode number, tracks modes as objects for DECAF
- The algorithm was tested on a set of expected plasma scenarios in NSTX/-U
- Code reads and can process KSTAR data. Needed next step to improve reading speed for long pulse data with high sampling rate

Automated Ident. of MHD Mode Bifurcation/Locking in Tokamaks – S.A. Sabbagh, et al. (11/30/17