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KSTAR H-mode equilibria have reached

and exceeded the computed

n =1 ideal no-wall stability limit
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a Highest B =4.3, B/l > 6
a MHD stability at high By

Many equilibria operate
above the published ideal
n = 1 no-wall stability limit
(DCON)

Plasma is subject to RWM
instability, depending on
plasma rotation profile

Normalized beta vs. internal inductance from EFIT reconstruction**

containing ~9.000 equilibria produced in the 2016 device campaign

*0. Katsuro-Hopkins, et al., Nucl. Fusion 50 (2010) 025019
**Y.S. Park, et al., Nucl. Fusion 53 (2013) 083029
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High By > By 8" operation
mostly limited by 2/1 mode




High By > 3 equilibria limited by MHD - shot 16295

2/1 mode onset
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2 0 High By plasmas were

S =

KSTAR high By discharge evolution showing parameters

from fully converged EFIT reconstructions
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significantly extended to
longer pulse by utilizing
Improved plasma control

Sustained high 3,29 = 3.3
achieved for 3 s

Used max. available P\g, =
4.5 MW

|, = 430-470KA, B; = 1.2T,
q95 - 40-451 W'[Ot - 270 kJ

2/1 tearing mode onset at
high B, phase

Consequently reduces By
and W,,, by ~35%




Onset of strong 2/1 tearing mode terminated high By

KSTAR 16295
- | ' [

a At high By phase, a benignn =2

O | T | - mode (presumably 3/2 mode) exists
© 20L n:= odd amplitude ] _
5l | ] with strong sawteeth
£ 1ol | 21 mode onset No indication of W, reduction due
B 5¢ to the n = 2 mode having [B,| ~2 G
= N
60! a High By operation was limited by
5ol strong 2/1 tearing mode onset
N Measured mode amplitude > 20 G
x 40r
= Both W, and B, were reduced by
S 307 ~35% but maintained H-mode
>
o 20} Similar discharges exhibited
H- different 2/1 tearing mode onset
10} time (expected to be triggered by
0 sawteeth)
0
Time (s) O Plasma rotation profile significantly
Toroidal magnetic probe spectrum and mode amplitude reduced by > 20% due to the 2/1
in_high B, discharge mode onset
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Comparative equilibria having higher gy and 8, shows very

different MHD stability - shot 16325

KSTAR 16325 12
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0 Plasma operation at elevated
B, produced equilibria having
higher qgs and B,

o 2 4 & s w© 1= w4 g Unlike shot 16295, discharge

Time (s) , _ -
KSTAR 16325 disch ution shou t doesn’t experience any major
ischarge evolution showing parameters C . S
from fully converged EFIT reconstructions beta-limiting MHD activities
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Kinetic EFIT with MSE constraints used for accurate stability

analysis for the first time on KSTAR

KSTAR 16295

L F =136 EFIT pressure profile ]

Kinetic EFIT
—-— Magnetics-only EFIT

(t~215s)

Pressure peaking factor:

Fp =p,/ <p>
OjO 0i2 014 OjG 0i8 110
| EFIT g-profile = ——Kinetic EFIT

—-— Magnetics-only EFIT
(t~2.159)

Unconstrained

. ——

MSE constrained

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Flux, b

Reconstructed pressure and safety factor profile

from kinetic EFIT using internal profile constraints
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a Equilibrium reconstruction now uses
measured internal profile constraints

Provides reliable pressure profile and
internal magnetic geometry
necessary for stability and transport
studies

S.A. Sabbagh, Nucl. Fusion 41 (2001) 1601

0 KSTAR is equipped with key internal
profile diagnostics

Charge exchange (T;, V,) : 32 CHs
Thomson scattering (T,, n,) : 27 CHs
ECE radiometer (T,) : 76 CHs
Motional Stark Effect : 25 CHs

Total number of available constraints
for fit : 161 magnetics + 160 kinetics
& MSE

SEE Y. Jiang’s talk on 11/29/17




DCON stability calculation shows high B equilibria are

subject to n = 1 ideal instability

15 KSTAR 1629? . . . 10
[ | o ' High By equilibria
101 | | DCON W
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°e R (m)
of 10f----- ©-8--o---- O N e e e Q0 At observed high By phase,
i 0 ®® °] ‘. ® e® _
o2 © g ° ® DCON calculates unstable n =1
o ' mode with no-wall (B > By "o"a")
00— > 3 4 5 6 7 0 (q,,mostlystays below 1 which
Time (s) supports a potential 2/1 mode

DCON computed no-wall 8W and EFIT g, in high B triggering by sawteeth

equilibria_of shot 16295 A.H. Glasser, Phys. Plasmas 23 (2016) 072505
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ldeal mode stability computed by M3D-C?! code

shows consistent result with DCON

KSTAR 16295 Ideal mode unstable
LT (v > 0) in M3D-CR
(a) 1.0

- O Linear stability of ideal mode
M3D-C1 (b) computed by using resistive
MHD code M3D-C*

Extended MHD code solving
two-fluid resistive MHD

Ideal wall

101/ M3D-C' AY

0.5}

= . equations
\N/ 0.0 G
~ 0 The high By equilibrium is
05 computed to be unstable by
0.5 M3D-C! consistent with DCON

-1.0

O Kinetic RWM stability can
N\ V7 gotezes0asts | LG ST T T 00 22 24 explain the opserved RWM
12 16 20 24 R (M) stable operation at B > Byowal
R (m)

(a) The perturbed poloidal flux of unstable ideal mode
from M3D-C! and (b) corresponding Poincaré plot
with exaggerated displacement
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Comparative equilibria with high gq; are stable ton =1 in DCON

__KSTAR 16325
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DCON computed no-wall SW and EFIT ¢, in high ggs
equilibria_of shot 16325

&2 COLUMBIA UNIVERSITY

IN THE CITY OF NEW YORK

Unlike the high B case,
equilibria at lower B is mostly
stable to n = 1 ideal modes in
DCON

The elevated g-profile at higher
B, leads to higher g, above 1

No indication of sawteeth found
in the MHD spectrogram

Possible lack of non-linear
seeding from sawteeth could
improve the neoclassical
tearing mode stability



50+

-100

Tearing stability is examined by the resistive DCON code

KSTAR 16295

High Bn equilibria
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O Resistive DCON is used to compute the tearing stability index, A’, atq = 2
surface by using the outer layer solutions

O A’ which is mostly positive in the target equilibria predicts unstable tearing
mode, and explains the importance of the neoclassical effects in the observed

stability

&2 COLUMBIA UNIVERSITY

IN THE CITY OF NEW YORK

A.H. Glasser, et al., Phys. Plasmas 23 (2016) 112506



Resistive 2/1 tearing mode stability of high B equilibria

examined by using M3D-C!

2/1 tearing mode stable
- (y<0)in M3D-C? O Linear stability of the
o1 (a) M3D-C v: | s observed 2/1 tearing mode
computed by M3D-C?

Used experimental
equilibrium and measured T,
profile from TS diagnostic for
the input resistivity

KSTAR 16295

(o)) M3D-C! |

0.5
0.5¢

Z (m)

Increased resolution around
the mode rational surface
using the adaptive meshing

-0.5¢1

1.0t i g016295.02315 { 1 | [ Q The 2/1 tearing mode IS

S S I

12 16 20 24 17 14 16 18 20 22 22 Marginally stable in M3D-C!
R (m) R (m)
(a) The radial velocity eigenfunction of a 2/1 tearing

mode from M3D-C! and (b) corresponding Poincaré
plot with exaggerated displacement

Unstable experimentally

Computed negative mode
growth rate

S.C. Jardin, et al., J. Comput. Phys. 226 (2007) 2146
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TRANSP analysis examines |gs-profile alignment with

tearing rational surface
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0 Interpretive TRANSP analysis using KSTAR experimental equilibria and
measured internal profiles to calculate plasma evolutions especially for the non-
inductive plasma current

O Bootstrap current profile from TRANSP and g-profile from MSE-constrained
EFIT will be used for improved tearing stability analysis including the pressure-
driven terms

SEE J.H. Ahn’s talk on 11/29/17
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RWM stability evaluated with ideal and kinetic

components allows for passive stabilization of the RWM

0 Kinetic effects modify ideal MHD n = 1 stability (MISK code) mo‘g;‘fgion
Collisional dissipation _ W, +oW
| o (y—ian)z, =——2— K
Rotational stabilization |:> SW,, +0W,

B. Hu, et al.,, PRL 93 (2004) 105002
J.W. Berkery, et al., PRL 104 (2010) 035003
S.A. Sabbagh, et al., Nucl. Fusion 50 (2010) 025020 4 Resistive Wall Mode

4
.
-

Ideal Kink Mode

Tl
Trapped ion component (typically dominates Re(dW)) Y TW,,/

. . table .~ /

5 0
X N

B with-wall
N

cSWKOCJ

(@p)+10, —ivy + 0 —0—iy

. . ) no-wall
precession drift bounce collisionality EXB BN

N

Ideal Stability || Kinetic Effects

O Stability modification depends on

Integrated w, profile: resonances in dW
Particle collisionality J.W. Berkery, et al., MHD Workshop (2015)

O Plasma is stable when rotation is in resonance

| = 0 harmonic : resonance with precession drift frequency = @+ <®p >=0
| =-1 harmonic : resonance with bounce frequency W+ <wp >-w, =0
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Kinetic modification of RWM stability is evaluated with including

energetic particle effects

KSTAR 16295 @ 2.315 s KSTAR 16325 @ 11.975s
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n =1 RWM stability diagram with scaled experimental rotation profiles

a MISK calculations find the equilibrium is stable to RWM as is consistent with
experiment (rotation profile is scaled from 0.1 to 2 times in the analysis)

O Energetic particles are predicted to give a strong stabilizing effect to RWMs
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J.W. Berkery, et al.,
Y.S. Park, et al., Nucl. Fusion 51 (2011) 053001

PRL 104 (2010) 035003




RWM active control system hardware is installed in KSTAR

KSTAR RWM feedback model in VALEN-3D RW M feedback sensors on passive plates
Saddle loops /

MPZUO3 (s sensoryf o oS¢ MPZUO4 (@ sensor)
) KK N / - g (R =210 m,
Z=0.68 m)

Middle-IVCC
<+ RWM control
coils (4 coils)

MPZL20 (8 sensors)
(R =2.18 m,
Z=-0.56 m)

Primary RWM control coils”- =
(Middle FEC/RWM)

LM sensors

NSTX-type future RWM
sensors (imaginary)

Y.S. Park, et al., Phys. Plasmas 21 (2014) 012513 <lower passive plate - top view>
Q For plasma operation at By > By "2, RWM control system is prepared in KSTAR

The middle in-vessel control coils (IVCCs) minimizes the inductive shielding by the copper
passive stabilizing plates during RWM feedback

Three sets of RWM B, sensors with max. 8 toroidal locations (Upper — MPZUO3 &
MPZUO04, and Lower — MPZL20) have been installed on the inner surface of the passive
plates = total 20 independent B, measurements for RWM identification (fssmpe = 20 kHz)

&2 COLUMBIA UNIVERSITY 15
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New RWM sensors will give superior control performance

over the previous device sensors

/f‘ﬁli\ By = 5.0 10 —T T v T T — v T E
0504 g3 o3 =1 : | DCON 'DCON 5
/ S | : ' no-wall limit ' with-wall lV
| : 1 :
é \ : 10" s
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. . ]
with compenstation | MPZU03-L20 (8+8) @ R = 2.188m ]

E MPZU04-L19 (8+8) @ R = 2.099 m 1

B O~ NS SR O . E New RWM ! ?7
\ @ ! sensor s ]
[ — I ./.4
o 10°} ! performance .5/ i
~ (1] ! ./
RN o : . / j ]
_ : we) “~1 | New < | Passive growth 7 1§ MPZU03-L.20 sensor |
~|§r 0 (unstable} I PR, A _ :: RWM g 102 L : '.,.’. /. W/O Compensat|on _
: _|- i = ! o ]
Mode 3 47 sensors | o ! yd ] /
N 1 = ' ~ t % |
S 10"k : oo , MPZU04-L19 sensor
o E ./.,./ ! i ‘/w/o compensation
e B : ’..’ ‘ ﬂ ﬂno—wall E
1 10°F E ; "E Cy= ﬂv;‘alliﬁ,\":‘mvm :
:b'., |
f

L . 1 i L

; 2 ' 3 ' 4 5 6
1 3
R@m) B
Y.S. Park, et al., Phys. Plasmas 21 (2014) 012513 RWM control performance of the new RWM sensors

0 The design advantages of the new RWM sensors result in greater mode
control - almost up to the ideal with-wall limit (C, = 98%, B = 4.8)
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Strong coupling between RWM feedback sensors and passive plates

could be detrimental to RWM feedback

t=0.845 s
15 ‘ . . . . . —r—
7Br from IVCC alone !
10l B from induced currents
—Total B 7*
e |
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VALEN-3D computed sensor measurement
a

examined by VALEN-3D code
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Computed induced currents _on_the internal

passive conductors when 10 Hz n = 1 rotating field
is applied from RWM control coils (m-IVCCs)

Transient effects of the induced currents on the passive plates have been

KSTAR passive plates are found to give a significant inductive effect on RWM

sensor measurement when RWM colls are activated
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DC sensor compensations for RWM identification

3 KSTAIR17804 ' . ‘
2 ol <RWMcoill>] @ Define the DC-compensated JB:
E ;'- ‘ - Ncoil
50 | OBoc=5Bcor— ) M,
B - — -1*RMPMJULI ; .
O 21 T J

3 10 5 0 5 8Bcor : corrected 6B by base-line
Q) 20 < Raw 5B > 1 subtraction, drift correction
E 10F
LL | ] . . g . .
g 0 W 0 Significant inductive component
o : o :
S 101 —— wpzozsizo ] still remains In éBDc.WhICIh can be
= o0l ] compensated by using either:

' ~10 ' 5 ' 0 ‘ 5 _
— ool - - - - - - ] - Voltage loops on passive
S < DC compensated dBpc > | plates (not presently available in
2 KSTAR)
Q
£ - RWM caoil current (dlgy,/dt) as
©
= vessel current sources
-10 -5 0 5
Time (s)
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AC sensor compensation can eliminate the remaining 6B

components after the DC compensations

KSTAR 17804

O Similar to NSTX, use low-pass-

20

S | [Remaining afer < ] { 1 1= 9Boc u =92 ms| filtered (LPF) RWM coil currents
2 b N R T ) A ] as the source of the inductive 6B
L
g 0 Define the AC compensated oB:
©
=

_1'0 _'5 6 5 N¢oil Nz d]

v T . T T RWM,j
= 20} v | 6Bac = 6Bpc — z zpj,kLPF <d—]iTAc,k>
o < 0Bpc T, =3ms| | [k ‘
S 1ol i }|Compensated by 1, | | : ] J
9 | “ N N N \\ \\
e e Q The coefficient matrix p has max.
% \ 1 20 (Nsensor) x12 (Ncoil) X3 (Nr) =
z < OBac With 1y, 75 > | 720 elements
0 5 _ _
_ - 1 O LPF with 3 different rvalues has
< T3 =215 ms| ] been tested
o N v Y 1
© | \ .
s Of A UHUINSN NS A et 0 Tested zset well compensates
g -tof TTR i | B _h\ 1 the inductive effect. For the entire
I ' < > 7 ..

= 20} R AcWItN Ty, T, T3 > | RWM sensors, remaining |oB| <

-10 5 0 5 2 G after DC+AC compensations

Time (s)

&2 COLUMBIA UNIVERSITY 19

IN THE CITY OF NEW YORK



Algorithms for mode identification (mode-ID)

0 The magnetic perturbation has an amplitude (Agrywn) @and phase (drywm)

B(#)= Agym €OS(¢ — Brun )

O At the i-th sensor, the measured mode amplitude is:

Bi = ARWM COS(¢i _¢RWM )
B: = Agym COS(Bau ) €0S(2 )+ Agym SIN(Baur )siN(4)
Bi = CRWM COS(¢i)+ SRWM Sin(¢i)

0 Combine signals to form an amplitude and phase of the plasma 3D perturbation

B, E_COS (¢1) sin (¢1)_i B,

B, _i Cos (¢2) sin (¢2) i|:CRWM } - M |:CRWM } N |:CRWM } Ve B, N Aqum = \/CFZQWM + SéWM

D : : L Srwm - Skwm Srum : Pruw = atan ( Sruwm ! Crum )
By | lcos(gy) sin(g,)] By

0 Convert the sensor fields at each time point to amplitude and phase

O Outputs passed within PCS to RWM feedback algorithms for control current request

a Algorithm is presently being implemented in KSTAR PCS for use in 2018
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Measured amplitude and phase of slowly rotating MHD mode

90 T T T T KS.TAR |1527? T T T v 6"‘ cof . II(STAR 15279 .
[ Exp. by Y.M. Jeon (NFRI) T TR > —— BPRWMPPPLD1 Lower B,
i 4 2 30t
75 @ difference #1
1 ] 0
N Q
I 60 - 1 . ©
i I a % -30f
2 a5 -3 . = 00t ' : : : ]
s | » = 2.45 2.46 247 248 2.49 2.50
=z & 15 . . . .
2 304 . = i o | Mode starts to be ModelD Amplitude
IV ﬂ' - A e = 2/1 mode S 10} measured by RWM sensors
151 w 7 e
| \ / locks ] § 5
0 1 ; 1 P ™
2.0 2.2 2.4 2 6 2.8 3 | . ' ,
& 40 - - : - - = 94 2.46 2.47 2.48 2.49 2.50
~ 30l — Fast Mirnov probe ] — 360 : . . :
% n = odd amplitude (MC1T) >
.‘g 20 | (fsample =200 kHZ) E 270 r
a 10} 1 P
AR DIV S W e
2.0 2.4 2.6 2.8
® 90
Time (s) é
Toroidal magnetic probe spectrum and mode amplitude 245 246 247 248 2.49 2.50

Time (s)

Measured mode amplitude and phase by mode-ID

O Since RWMs have yet to be measured on KSTAR, mode identification has been
tested for slowly rotating tearing modes (w/o applied feedback)

0 Used 10 B, sensor differences (180° opposing sensor pairs) for n = 1 identification

0 Mode identification well measures the evolution of n = 1 locking tearing mode
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Conclusions and Next Steps

0 KSTAR plasmas have exceeded the predicted ideal n = 1 no-wall limit

0 ldeal and resistive stability of the achieved high B is analyzed
Kinetic EFIT with MSE constraints is used for accurate stability analysis

Achieved high B equilibria are subject to ideal n = 1 mode instability (DCON,
M3D-C1)

Resistive DCON analysis emphasizes the role of the pressure driven effects in
the observed tearing stability

Kinetic RWM stability can explain the observed stability at high B, (MISK)

O Development of algorithm for RWM identification

Significant 8B induced mostly by the passive plate response is well compensated

O Next Steps

Improve stability analysis by employing the pressure driven terms calculated by
TRANSP, and by further refinement in the kinetic EFIT reconstructions

Implement the developed mode-ID routines into the KSTAR PCS
Attempt experiments in 2018 to improve sustained high B, and probe MHD stability
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