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Predictive models that run in near- to faster-than- real-time will
enable improved control and scenario development algorithms

* Neural networks have recently been developed for approximating the
results of computationally intensive calculations
— Meneghini NF 2017, 2014 (TGLF, EPED), Citrin NF 2015 (QuaLiKiz)

 NUBEAM often takes 30% or more of TRANSP time
— Lower fidelity settings can speed up results but results become noisy

« Can a neural network be trained to reproduce the result of
NUBEAM?

« Potential applications

— Fast but realistic beam calculations for control-oriented simulations or use in
real-time predictive control algorithms

— Fast predictions to optimize neutron rate matching in TRANSP runs

— Prediction of fast ion pressure profile for kinetic EFITs
= Fast enough iterations for real-time implementation

— Control room tools for P.O or S.L. to explore beam timing options prior to shot
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Inputs, outputs, and topology of the
neural network model

* Inputs: Multiple separately
— Profiles: trained neural networks | Qutputs:
= T, N, Average,
. fast i?)nqdiffusivity Inputs | — >
— Scalars: deviation,
= Beam powers min/max
= Edge neutral density
" Ly
« QOutputs:
— Profiles: Neural network
= Beam he_ating to ions/electrons Input layer
= Beam driven current
= Beam torque
= Fast ion pressure Hidden layer (~100 nodes)

— Scalars:
= Neutron rate
= Shine through
= Charge-exchange and orbit loss

Output layer
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A data set was prepared based on the TRANSP
runs performed between NSTX-U shots (BEAST)

« Expanded the dataset with a scan of Z_, anomalous fast
ion diffusivity, and edge neutral density
— Randomly selected ~2000 cases from the grid scan to actually run

for initial testing
— Used low fidelity settings for speed for initial testing

= Results are noisy but NN can smooth them

* Projected profiles onto basis functions
» Reduced 20 grid points per profile to 4 mode coefficients per profile

» Reduces training time, also results in smooth-in-x profiles

 Assigned 80 of ~300 shots in the dataset to the ‘testing’

data set
— No data from any simulations of these shots is used in training the

model
* Total of ~200k time slices
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The beam slowing down time causes NUBEAM
results to depend on time history...

« Simplest approach to modeling:

—Ignore time history, assume steady-state, only use
iInstantaneous values of inputs

— Probably not always suitable for planned applications
= e.g., Beam modulation during control

* The next simplest approach:

— Expand inputs with filtered beam powers
= Multiple time constants to account for changes in slowing down time

— Not accounting for time history of plasma parameters

= Fewer inputs, fewer nodes to train on

» Plasma parameters evolve fairly slowly compared to slowing down time
and beam modulation time
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Time traces of NN compare well with

NUBEAM for shots In testlng data set
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Profiles show good agreement between
NUBEAI\/I and neural network Qredlctlon
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Time traces compare fairly well during
beam bI||:_) shots In testlng data set
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Regression plots for training and testing data set
show good fitting and generalization

Training

lel4d NEUTT

R?=0.939

S
Z 1.0

0.5}

00 Il L L L
0.0 0.5 1.0 1.5 2.0

NUBEAM

PFI

eld

35000 R2=0948

30000 |

25000 |

mNet

c 20000 |
9]

Nub

15000

10000

5000

0 L L L L L L L
0 5000 10000 15000 20000 25000 30000 35000
NUBEAM

10°

10°

* Log scale
histograms

* R2drops in
testing data

set but not too
bad

— Will continue to
optimize neural
network
topology, add
more data, etc.
to improve
generalization

« Some
parameters
were pretty
noisy, resulting
in lower R?
(>0.8)

lel4 NEUTT

Testing

R?=0.882

2.0

o 15F

mNe

bea

S
Z10F

0.5

0.0

0.0 0.5 1.0 1.5 2.0
NUBEAM lel4

PFI

35000} R2=O.931

25000 |

mNet

20000 |

©
[

Nub

15000 |

10000 |

5000 -

0 L L L L L L L
0 5000 10000 15000 20000 25000 30000 35000
NUBEAM

10°

10°

10*

103

102

10!

10°

'QIDNSTX-U

Neural network modeling of NUBEAM on NSTX-U, M.D. Boyer, December 5, 2017



Neural net enables rapid scans of parameters

(<<1s per shot)

" 204992 N31: CURB

=45

CURB i

0.0 0.2 0.4 0.6 0.8 1.0
X

lel3 204992 N31: NEUTT

— Zeff=1.5
— Zeff=2.5
4r — Zeff=3.5

NEUTT

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Time [s]

| » Z 4 affects
™ current drive,

e Scans of

single
parameters
with other
inputs fixed

45

TQBE i

neutron rate,
small effect
on torque /
(electrons)

| « Edge neutral

density
effects CX
losses ——

le—8

204992 N31: TQBE

— Zeff=1.5

BPCXO0

160000

140000 -
120000 -
100000 -
80000 -
60000 -
40000 -
20000

ol

—20000
0.0

0.2 0.4 0.6 0.8 1.0
X

204992 N31: BPCXO

—_ anout 5. 00e+10
— dnOout=5.00e+11
— dnOout=5.00e+12

0.2 0.4 0.6 0.8 1.0 1.2
Time [s]

@NSTX-U Neural network modeling of NUBEAM on NSTX-U, M.D. Boyer, December 5, 2017 10



Testing on a higher fidelity run that was

not included in training data set
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* Results may improve with
additional low fidelity training data

* However, probably will need to
train on higher fidelity scans
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Example application: Fitting free/uncertain
parameters to match measured neutron rate

* One of the steps in interpretive TRANSP runs is to
match the predicted and measured neutron rates

— Find values of fast ion diffusivity, external neutral density, and/
or Z ., since these are not well constrained

* Typically done with scans

— Parameters can be time-varying so its hard to match the
neutron rate at all times

» Recently added a feedback algorithm in TRANSP
— Adjusts fast ion diffusivity based on error in neutron rate
prediction

— Automates the matching process
= Useful for between shots (BEAST) runs
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Fast execution time of neural network enables optimization of
free parameters — could provide ‘feedforward’ for AFID
controller

» Find fast ion diffusivity profile, edge neutral density, and/or Z ¢
that minimizes neutron matching error
— More free parameters than errors to minimize

— Solution: Regularize by weighting ensemble uncertainty

= j.e., find the solution that best matches neutron rate while staying in the range of
inputs that the model has confidence in
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Future work

 More data, more devices...

— Generate more runs, use higher fidelity runs, poach existing runs...
— Apply approach to DIII-D, KSTAR, etc.

« w/ S. Sabbagh and Columbia KSTAR collaboration:

— Use NubeamNet prediction of fast ion pressure profile in kinetic EFIT
iterations to reduce error bars while avoiding the need for TRANSP/
NUBEAM in the loop

» Develop/test/deploy AFID fitting for routine use with

TRANSP runs

* Implement NubeamNet in PCS for real-time applications
— Real-time kinetic EFIT, profile control
— Power balance monitoring
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Discussion

» Other outputs of NUBEAM that would be useful to
include?

« Suggested settings for high fidelity scans?

 Other potential applications of the model or modeling
approach?

— RF codes?
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