

Low-Z impurity particle transport and intrinsic rotation studies using the new CXRS capabilities at ASDEX Upgrade

<u>R. M. McDermott¹,</u> A. Lebschy^{1,2}, C. Bruhn^{1,2}, C. Angioni¹, R. Dux¹, I. Erofeev¹, E. Fable¹, B. Geiger¹, W. Hornsby¹, A. Kappatou¹, P. Manas¹, D. Prisiazhniuk^{1,2}, T. Pütterich¹, U. Stroth^{1,2}, E. Viezzer³ and the ASDEX Upgrade Team

[1]Max-Planck-Institut für Plasmaphysik, Garching, Germany[2]Technische Universität München, Garching, Germany[3]Dept. of Atomic, Molecular and Nuclear Physics, University of Seville

Monday, January 8, 2018, PPPL, Princeton, NJ, USA

Overview

- CXRS diagnostics at ASDEX Upgrade
 - System capabilities & routine operation
 - Measurement of core impurity poloidal rotation
- Rotation studies
 - Database of impurity poloidal rotation
 - Measurements across the LOC-SOC
- Impurity particle transport studies
 - New method for determining B transport coefficients
 - Initial data and comparisons to theory

Overview

- CXRS diagnostics at ASDEX Upgrade
 - System capabilities & routine operation
 - Measurement of core impurity poloidal rotation
- Rotation studies
 - Database of impurity poloidal rotation
 - Measurements across the LOC-SOC
- Impurity particle transport studies
 - New method for determining B transport coefficients
 - Initial data and comparisons to theory

Full coverage CXRS at AUG

McDermott RSI 2017

Full coverage CXRS at AUG

	# LOS	T _{int} >	Δr (cm)	λ	
CAR: LFS core φ	24	4ms	1.5	Не	NBI Box I
CCR: LFS core φ	24	4ms	1.5	С	NBI Box I
CER: LFS core φ	24	3.5ms	1.5	B (flex.)	NBI Box I (workhorse)
CHR: LFS core φ	8	10ms	1.5	N (flex.)	NBI Box I
CMR: LFS edge φ	24	1.9ms	0.3	B (flex.)	NBI Box I (workhorse)
CPR: LFS edge θ	24	1.9ms	0.5	B (flex.)	NBI Box I
COR: L/HFS core φ	24	2.5ms	0.75	B (flex.)	NBI Box II (New 2014)
CUR: L/HFS core φ	24	2.5ms	0.75	B (flex.)	NBI Box II (New 2014)

Standard operation with 8 CXRS systems

- 10ms core, 2ms edge
- Very detailed profiles!

Non-Standard operation

- Fast pedestal system (CNR) ~ 50μs
- HFS gas puff toroidal and poloidal pedestal systems

Poloidal Rotation Measurements

- Direct CXRS measurement using poloidal LOS
 - Works well in edge, but not in core
- Indirect measurement technique → Use poloidal asymmetry in toroidal rotation to infer poloidal rotation

$$\vec{u}_{0} = \hat{\omega} \, \mathbf{R} \vec{e}_{\phi} + \hat{u} \vec{B} - \begin{cases} u_{\phi} = \hat{\omega} R + \hat{u} B_{\phi} \\ u_{\theta} = \hat{u} B_{\theta} \end{cases}$$
Hinton & Hazeltine,

Hinton & Hazeltine, Rev. Mod. Phys 1976 Bortolon, NF 2013

Poloidal Rotation Measurements

- Direct CXRS measurement using poloidal LOS
 - Works well in edge, but not in core
- Indirect measurement technique → Use poloidal asymmetry in toroidal rotation to infer poloidal rotation

$$\vec{u}_{0} = \hat{\omega} R \vec{e}_{\phi} + \hat{u} \vec{B} - \begin{cases} u_{\phi} = \hat{\omega} R + \hat{u} B_{\phi} \\ u_{\theta} = \hat{u} B_{\theta} \end{cases}$$

Hinton & Hazeltine, Rev. Mod. Phys 1976 Bortolon, NF 2013

- If zero poloidal velocity
 - Flow \rightarrow solid body rotation
 - Expect to measure <u>SAME ω</u> at all points on a flux surface

Poloidal Rotation Measurements

- Direct CXRS measurement using poloidal LOS
 - Works well in edge, but not in core
- Indirect measurement technique \rightarrow Use poloidal asymmetry in toroidal rotation to infer poloidal rotation

$$\vec{u}_{0} = \hat{\omega} R \vec{e}_{\phi} + \hat{u} \vec{B} - \begin{aligned} u_{\phi} &= \hat{\omega} R + \hat{u} B \\ u_{\theta} &= \hat{u} B_{\theta} \end{aligned}$$

Hinton & Hazeltine, Rev. Mod. Phys 1976 Bortolon, NF 2013

 ϕ

1) PDX: Brau NF 1983 2) TCV: Bortolon NF 2013 3) DIII-D Chrystal RSI 2014

- If there is polodial velocity:
 - HFS and LFS "measured" ω not constant on flux surface
 - Expect to see different rotation frequencies

$$\frac{u_{\phi,LFS}}{R_{LFS}} = \hat{\omega} + \hat{u} \frac{B_{\phi LFS}}{R_{LFS}}$$
$$\frac{u_{\phi,HFS}}{R_{HFS}} = \hat{\omega} + \hat{u} \frac{B_{\phi HFS}}{R_{HFS}}$$

Which way does the asymmetry go? 🏴

ASDEX Upgrade magnetic geometry

- Define:
 - Positive v_{ϕ} in co-I_p direction
 - Negative v_{ϕ} in cntr-I_P direction

Which way does the asymmetry go? 🔛

- ASDEX Upgrade magnetic geometry
- Define:
 - Positive v_{ϕ} in co-I_p direction
 - Negative v_{ϕ} in cntr-I_P direction
 - Assume flow parallel to B
 - Ion diamagnetic v_{θ}
 - Reduces measured toroidal flow on both LFS and HFS
 - But reduced the HFS more!

Which way does the asymmetry go? 🏴

- Define:
 - Positive v_{ϕ} in co-I_p direction
 - Negative v_{ϕ} in cntr-I_P direction
 - Assume flow parallel to B
 - Ion diamagnetic v_{θ}
 - Reduces measured toroidal flow on both LFS and HFS
 - But reduced the HFS more!

$$\frac{u_{\phi,LFS}}{R_{LFS}} = \hat{\omega} + \hat{u} \frac{B_{\phi LFS}}{R_{LFS}}$$

$$\frac{u_{\phi,HFS}}{R_{HFS}} = \hat{\omega} + \hat{u} \frac{B_{\phi HFS}}{R_{HFS}}$$

Core v_e ion diamagnetic directed

- "Cross-over" \rightarrow change in sign of $v_{\theta,B}$
 - Ion directed in the core
 - Electron directed in the edge

Core v_e ion diamagnetic directed

- "Cross-over" \rightarrow change in sign of v_{θ}
 - Ion directed in the core
 - Electron directed in the edge
- Comparison w/ edge measurements

Rotation not neoclassical

- In core of AUG ion-diamagnetic impurity poloidal rotation routinely observed
 - Neoclassical calculations: NEO, NCLASS, NEOART

IPP

Overview

- CXRS diagnostics at ASDEX Upgrade
 - System capabilities & routine operation
 - Measurement of core impurity poloidal rotation
- Rotation studies
 - Database of impurity poloidal rotation
 - Measurements across the LOC-SOC
- Impurity particle transport studies
 - New method for determining B transport coefficients
 - Initial data and comparisons to theory

Rotation not neoclassical

- In core of AUG ion-diamagnetic impurity poloidal rotation routinely observed
 - Neoclassical calculations: NEO, NCLASS, NEOART
 - Turbulent (other?) drive stronger than viscous damping?

AUG Core (B) poloidal rotation database

- Good data on HFS and LFS:
 - Recent boronization
 - low to moderate n_e<6e19 m⁻³
- Edge region w/ imp. density asymmetry excluded

Database:Parameter range:• 15 discharges• $\upsilon_i^*: 0.15 - 3.4$ • 62 time intervals• $R/L_{Ti}: 2-10$ • 400 entries• $R/L_{ne}: 0-6$

- NC u_{pol} calculated w/:
 - NCLASS [Houlberg PoP 1997]
 - NEOART [Peeters PoP 2000]
 - NEO [Belli PPCF 2008]
- Data points significantly shifted in ion diamagnetic direction
- Only small variations in neoclassical u_{pol}

IPP

• Substantial number of points with opposite drift direction

• Slight shift in ion dia. direction

IPP

• same trend as NC predictions

u_{pol} scales with collisionality

- NC u_{pol} scales with R/L_{Ti} & R/L_{ne}
 - No clear correlations with either
 - R/L_{Ti} & R/L_{ne} strongly correlated
 - Expansion of database future work
- Difference in NC and exp. boron u_{pol} increases at low υ*

IPP

u_{pol} scales with collisionality

- NC u_{pol} scales with R/L_{Ti} & R/L_{ne}
 - No clear correlations with either
 - R/L_{Ti} & R/L_{ne} strongly correlated
 - Expansion of database future work
- Difference in NC and exp. boron u_{pol} increases at low υ*
- DIII-D <u>main ion</u> u_{pol}deviates from NC at low collisionality
- AUG "low υ_i*" much higher than DIII-D "low υ_i*"
 - Additional hidden parameters
 - Future work: expansion of database for wider range of u_i* at "single r "
 - Main ion measurements at AUG

pp

Overview

- CXRS diagnostics at ASDEX Upgrade
 - System capabilities & routine operation
 - Measurement of core impurity poloidal rotation
- Rotation studies
 - Database of impurity poloidal rotation
 - Measurements across the LOC-SOC
- Impurity particle transport studies
 - New method for determining B transport coefficients
 - Initial data and comparisons to theory

Transport changes in LOC-SOC

- Energy, particle, and momentum transport change in ohmic plasmas with increasing n_e
 - τ_E increases linearly until critical n_e, above which it saturates [1]
 - n_e shows non-monotonic behavior [2]
 - Intrinsic v_{ϕ} flips sign [3], twice [4]

PP

[1] Murakami PRL1979, Ejima, NF 1981, ...[2] Fable 2010, Angioni 2012

[3] Bortolon 2006, Duval 2007, Rice 2012[4] Angioni 2011, McDermott 2011

Transport changes in LOC-SOC

- Energy, particle, and momentum transport change in ohmic plasmas with increasing n_e
 - τ_E increases linearly until critical n_e, above which it saturates [1]
 - n_e shows non-monotonic behavior [2]
 - Intrinsic v_{ϕ} flips sign [3], twice [4]

- Changes historically attributed, directly or indirectly, to changes in plasma turbulence → TEM-ITG
 - Transition present, but not needed to explain energy transport changes
 I. Erofeev NF 2017
 - TEM-ITG needed to explain electron particle transport [2]
 - Direct detection of turbulence changes difficult

Arnichand, NF/PPCF 2014/2016

[1] Murakami PRL1979, Ejima, NF 1981, ...[2] Fable 2010, Angioni 2012

[3] Bortolon 2006, Duval 2007, Rice 2012[4] Angioni 2011, McDermott 2011

Attempt to infer v_{ph} with NC v_{θ} failed

- v_{ph} indicative of "type": TEM/ITG rotate in elec./ion direction
 - Reflectometry measures: $v_{perp} = v_{ExB} + v_{ph}$
 - Independent measure of v_{ExB} yields information on v_{ph}

Attempt to infer v_{ph} with NC v_{θ} failed

- v_{ph} indicative of "type": TEM/ITG rotate in elec./ion direction
 - Reflectometry measures: $v_{perp} = v_{ExB} + v_{ph}$
 - Independent measure of v_{ExB} yields information on v_{ph}
 - 2014: v_{ExB} from radial force balance eqn. w/ CXRS v_{ϕ} & NC v_{θ}

Attempt to infer v_{ph} with NC v_{θ} failed

- v_{ph} indicative of "type": TEM/ITG rotate in elec./ion direction
 - Reflectometry measures: v_{perp} = v_{ExB}+v_{ph}
 - Independent measure of v_{ExB} yields information on v_{ph}
 - 2014: v_{ExB} from radial force balance eqn. w/ CXRS v_{ϕ} & NC v_{θ}

- Comparison in LOC indicated v_{ph}=~2km/s (ion-directed)!
 - Too big and 'wrong' direction!
 - 'Necessary' changes for 'reasonable' v_{ph} outside error bars $\rightarrow Non NC v_{\theta}$?

 $\rho_{\rm tor}$

Edge TEM-ITG transition after LOC-SOC

- Data obtained from 2 LOC-SOC transitions and comparison between reflectometry and CXRS data
- Change in edge v_{ph} from elec. to ion direction after LOC-SOC (in SOC)
- Qualitatively consistent with GKW simulation predictions
 - Strongly sensitive to Zeff

Overview

- CXRS diagnostics at ASDEX Upgrade
 - System capabilities & routine operation
 - Measurement of core impurity poloidal rotation
- Rotation studies
 - Database of impurity poloidal rotation
 - Measurements across the LOC-SOC
- Impurity particle transport studies
 - New method for determining B transport coefficients
 - Initial data and comparisons to theory

• $v_{eff} = v_{ei}/(c_s/R) \sim 0.3-1.9$ • Theory upable to capture

parameter space:

• R/L_{ne} ~ 0-4

• R/L_{Ti} ~ 3-7

• u' ~ -0.15-1.1

- Theory unable to capture experimental observations
 - He profiles systematically under-predicted

Database of He and B density

profiles constructed over wide

•

GK+NC unable to predict low-Z R/L_{nZ}

IPP

GK+NC unable to predict low-Z R/L_{nZ}

- Database of He and B density profiles constructed over wide parameter space:
 - R/L_{ne} ~ 0-4
 - R/L_{Ti} ~ 3-7
 - u' ~ -0.15-1.1
 - $v_{eff} = v_{ei} / (c_s / R) \sim 0.3 1.9$
- Theory unable to capture experimental observations
 - He profiles systematically under-predicted
 - Regions of opposite sign indicate "v" incorrect
 - Does not mean "D" is right

Thesis Work C. Bruhn, PPCF in preparation

ICRF power increases n_B in plasma

- After boronization (~2 weeks) application of ICRF increases n_B
- B increases first at edge & propagates inward → SOL source
 - 36MHz, H-minority ICRF
 - W and B-coated antennas
 - $\Delta n_B \sim P_{ICRF}$
 - No B increase for either steady state or modulated ECRH
 - $P_{ICRF} < 1MW + f_{mod} > 8Hz$
 - stable background conditions
 - ~10-15% n_B perturbation at edge

n_B signal clear and sinusoidal

- 8-10Hz symmetric modulation
- Up to 10% $n_{\rm B}$ perturbation at pedestal top
- 2-4% in plasma center
- $n_{\rm B}$ measured w/ 10ms & 16-40 radial locations on LFS
- Data fits VERY well to sine + cosine ansatz

IPP

 $n_{B \mod} = n_0(r) + a(r)\cos(2\pi ft) + b(r)\sin(2\pi ft)$ Model $n_{\rm B}$:

$$\begin{split} \min_{D,v} \frac{1}{2} \| n_{B_{-}\text{mod.}} - n_{B_{-}\text{meas.}} \|^2 \\ \frac{\partial n_{B_{-}\text{mod}}(r,t)}{\partial t} &= \frac{1}{r} \frac{\partial}{\partial r} r \left(D(r) \frac{\partial n_{B_{-}\text{mod}}(r,t)}{\partial r} - v(r) n_{B_{-}\text{mod}}(r,t) \right) \end{split}$$

Such that:

Thesis Work C. Bruhn, PPCF in preparation

 ∂t

Experimental data well reproduced

- Steady state, phase and amplitude from simulation reproduce experiment well
- Analysis also benchmarked against STRAHL

IPP

Predicted convection is a problem

- Neoclassical transport coefficients (NEO) 10x too small
- GKW QL correct order of magnitude and qualitatively very similar diffusion coefficients
- GKW convective velocity predicted wronged way (inward instead of outward)!
 - Missing outward flux, too strong inward flux?
- Next steps: database approach covering achievable variation in dimensionless parameters

Summary and Conclusions

- CXRS systems at ASDEX Upgrade upgraded (McDermott, RSI 2017)
 - Routinely provide full profiles of T_i , V_{ω} , and n_z from 4 (up to 6) impurity species
 - Provide very high quality v_{θ} and v_{ExB} profiles in the plasma core
- Core $v_{\theta,B}$ routinely measured in the ion-dia. direction (A. Lebschy, NF 2018)
 - Non NC, indicates a strong unaccounted for turbulent (or other?) drive
 - Correct $v_{\theta,B}$ important for correctly determining core ExB velocity
- Comparison of $v_{ExB} \& "v_{ExB} + v_{ph}"$ yield v_{ph} (A.Lebschy, NF 2018)
 - In SOC regime: change of v_{ph} toward the ion direction at edge
- New modulation method to separate D & v (C. Bruhn, PPCF, 2018 in preparation)
 - Applicable (and has ben applied) over wide range of plasma parameters
 - NC insufficient to explain observed transport
 - GKW D of correct order of magnitude and qualitatively similar shape
 - Predicted convective velocity goes the wrong way

Minimal perturbation from P_{ICRF} modulation

- No modulation visible on $n_e \& T_e$
- W_{MHD} perturbation from T₁ at ICRF deposition location (<3%)
- Steady conditions for transport analysis for RT> 0.25

Thesis Work C. Bruhn, PPCF in preparation

IPP