

Investigating High-k Turbulence and Electron Thermal Transport in NSTX with a Synthetic Diagnostic for High-k Scattering

J. Ruiz Ruiz¹

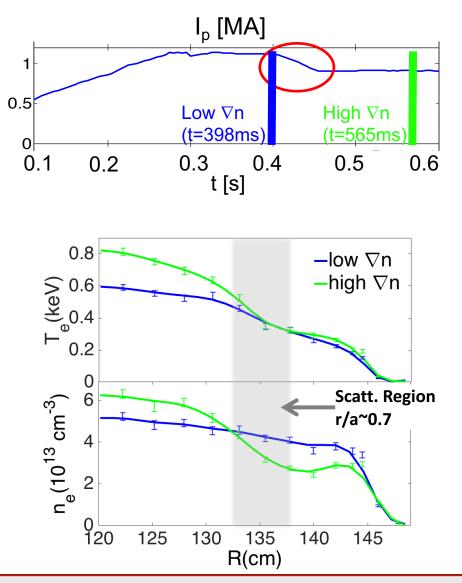
W. Guttenfelder², N. Howard¹, N. F. Loureiro¹, A. E. White¹, J. Candy⁷, Y. Ren², S.M. Kaye², B. P. LeBlanc², F. Poli², E. Mazzucato², K.C. Lee³, C.W. Domier⁴, D. R. Smith⁵, H. Yuh⁶

1. MIT 2. PPPL 3. NFRI 4. UC Davis 5. U Wisconsin 6. Nova Photonics, Inc. 7. General Atomics

Physics Meeting PPPL, April 17, 2018

Alcator C-Mod

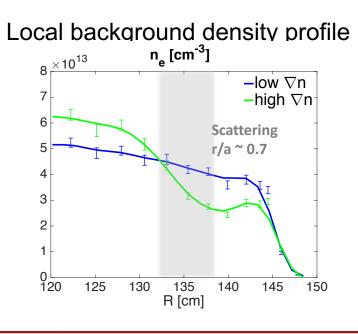
Work supported by DOE contracts DE-AC02-09CH11466 and DE-AC02-05CH11231

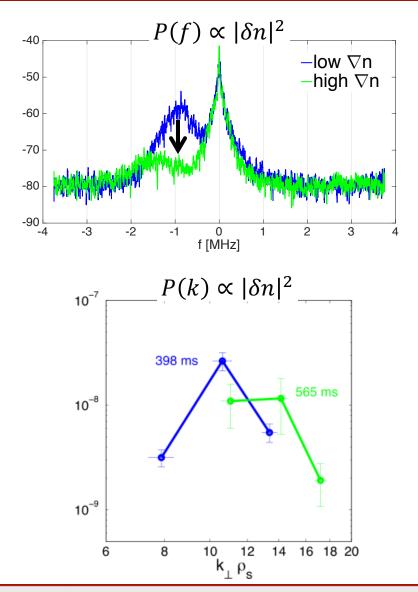

Outline

- Past work: NSTX H-mode discharge showing stabilization of ETG by density gradient
- High-k Scattering diagnostic at NSTX
- Synthetic High-k Diagnostic
 - Numerical GYRO Simulations needed
 - Past work on Syn Hk
 - Synthetic comparisons of *f*-spectrum with experiment
 - High-k Contributions to electron thermal transport

NSTX H-mode Plasma Showed Local Increase in Density Gradient

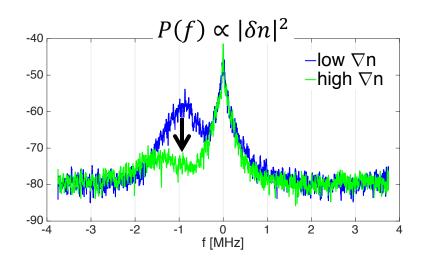
 NSTX NBI heated H-mode featured a controlled current ramp-down (141767)

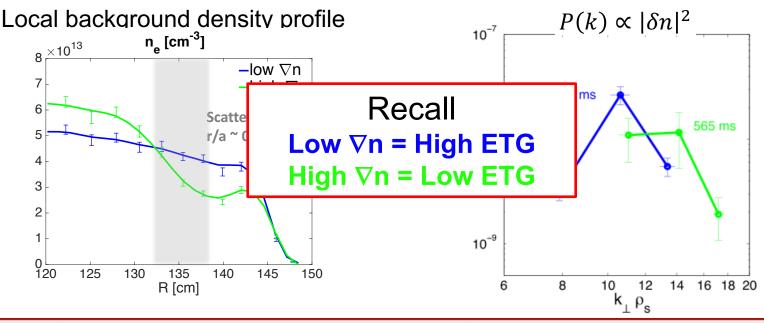

 Produced a local increase in equilibrium background density gradient at the scattering location

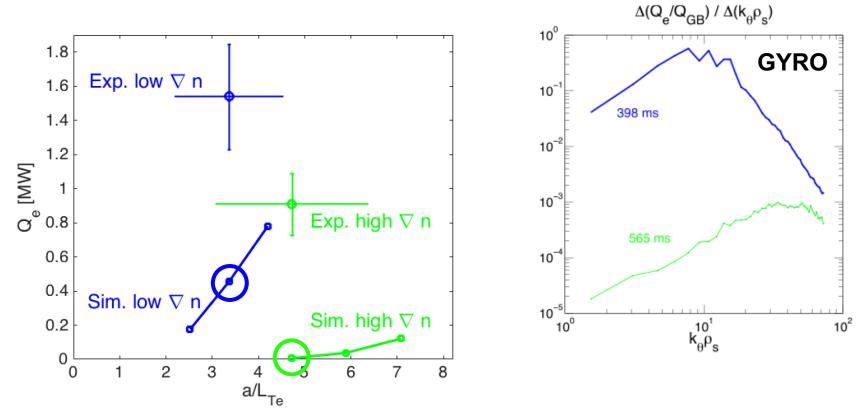


Background Density Gradient Increase was Correlated to Stabilization of e- scale Turbulence

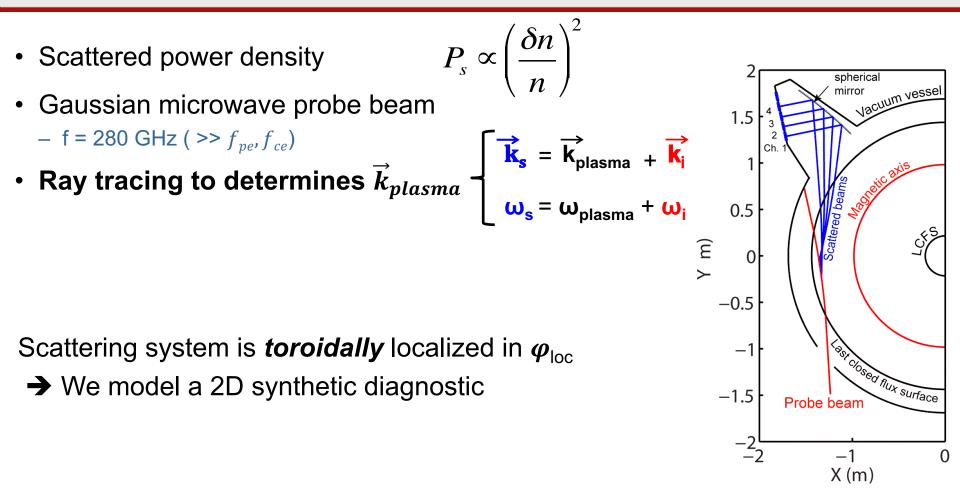
 High-k density fluctuation amplitude |δn|² (f, k-spectrum) stabilized by ∇n increase (measured by a high-k scattering). cf. Ruiz Ruiz PoP 2015.



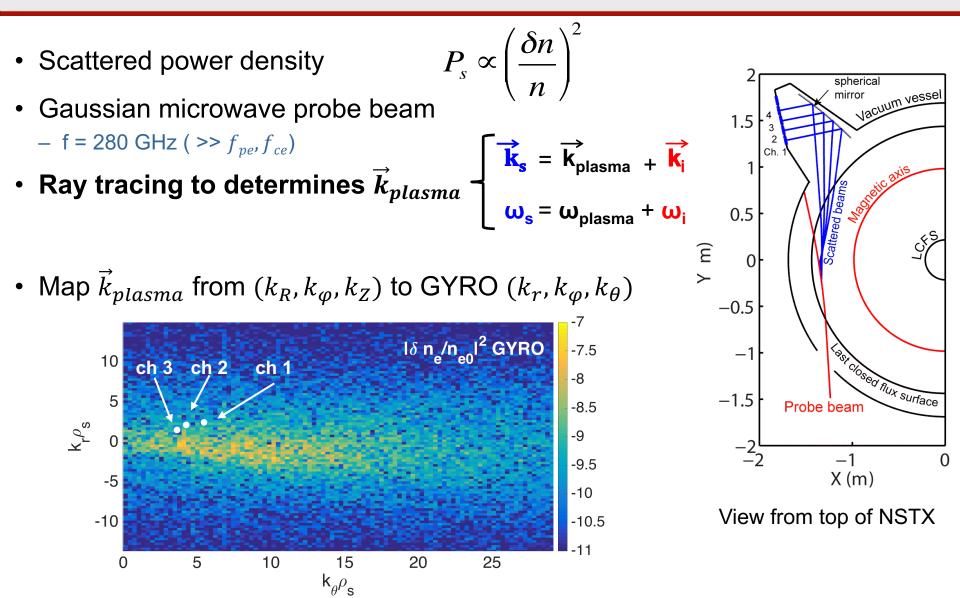



Background Density Gradient Increase was Correlated to Stabilization of e- scale Turbulence

 High-k density fluctuation amplitude |δn|² (f, k-spectrum) stabilized by ∇n increase (measured by a high-k scattering). cf. Ruiz Ruiz PoP 2015.


Nonlinear Electron Scale GYRO Simulations Cannot Explain Experimental Electron Heat Flux

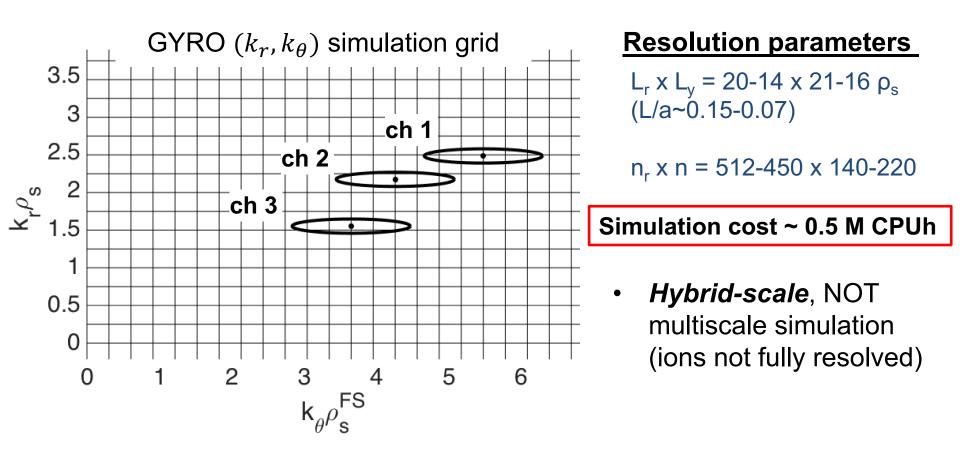
• Q_e underpredicted at low and high ∇n


Is simulation not reproducing turbulence accurately, or are there additional sources of transport?

Use a Coherent High-k Scattering Diagnostic to Probe Electron Scale Turbulence in NSTX and NSTX-U

View from top of NSTX

Use a Coherent High-k Scattering Diagnostic to Probe Electron Scale Turbulence in NSTX and NSTX-U

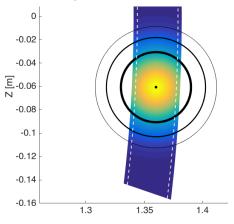

Numerical Resolution Details of GYRO ETG Simulations Needed for Synthetic Diagnostic of High-*k* Scattering

Experimental profiles used as input

Local simulations performed at scattering location (r/a~0.7, R~135 cm).

- Only electron scale turbulence included.
- 3 kinetic species, D, C, e (Z_{eff}~1.85-1.95)
- Electromagnetic: $A_{\parallel}+B_{\parallel}$, $\beta_e \sim 0.3$ %.
- Collisions (v_{ei} ~ 1 c_s/a).
- ExB shear (γ_{E} ~0.13-0.16 c_s/a) + parallel flow shear (γ_{p} ~ 1-1.2 c_s/a)
- Fixed boundary conditions with $\Delta^{b} \sim 2 \rho_{s}$ buffer widths (e- scale).

Hybrid-Scale ETG Simulations are Needed to Resolve Experimental Wavenumber



Numerical Resolution Details of GYRO Simulations Needed for Synthetic Diagnostic of High-*k* Scattering

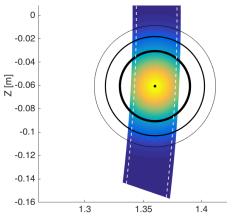
- Extensive Box size scans show Hybrid Scale Simulation is trade off:
 - Computational cost ~ 0.5 M CPU h
 - Correctly resolving experimental k (does not fully overlap scattering probe beam)

 $L_r \ge L_y = 20-14 \ge 21-16 \rho_s$ (L/a~0.15-0.07) $n_r \ge n = 512-450 \ge 140-220$

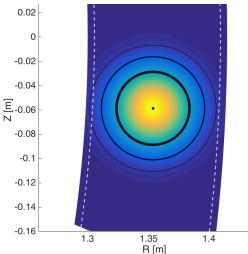
Hybrid Scale

Numerical Resolution Details of GYRO Simulations Needed for Synthetic Diagnostic of High-*k* Scattering

- Extensive Box size scans show Hybrid Scale
 Simulation is trade off:
 - Computational cost ~ 0.5 M CPU h
 - Correctly resolving experimental k (does not fully overlap scattering probe beam)

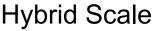

 $L_r \ge L_y = 20-14 \ge 21-16 \rho_s$ (L/a~0.15-0.07) $n_r \ge n = 512-450 \ge 140-220$

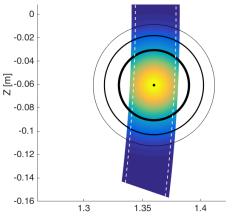
• Full-Box Hybrid Scale Simulation:

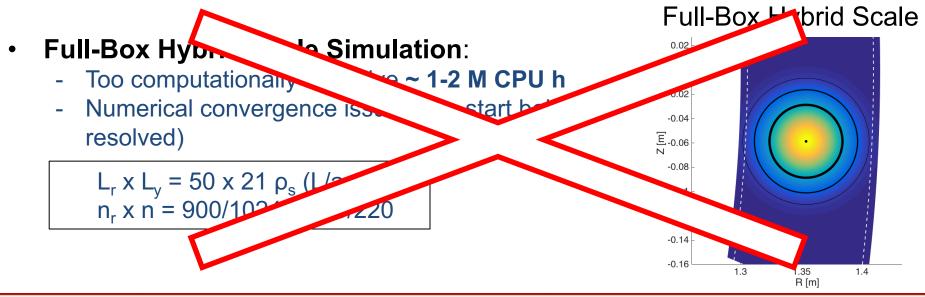

- Too computationally intensive ~ 1-2 M CPU h
- Numerical convergence issue (ions start being resolved)

 $L_r \ge L_y = 50 \ge 21 \rho_s (L/a \sim 0.2)$ n_r \times n = 900/1024 \times 140/220

Hybrid Scale

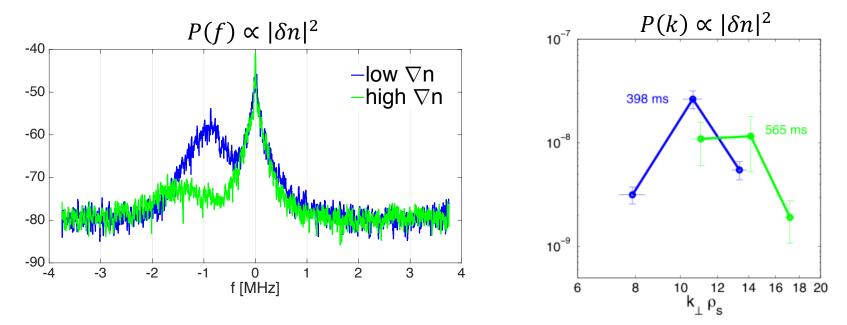

Full-Box Hybrid Scale




NSTX-U

Numerical Resolution Details of GYRO Simulations Needed for Synthetic Diagnostic of High-*k* Scattering

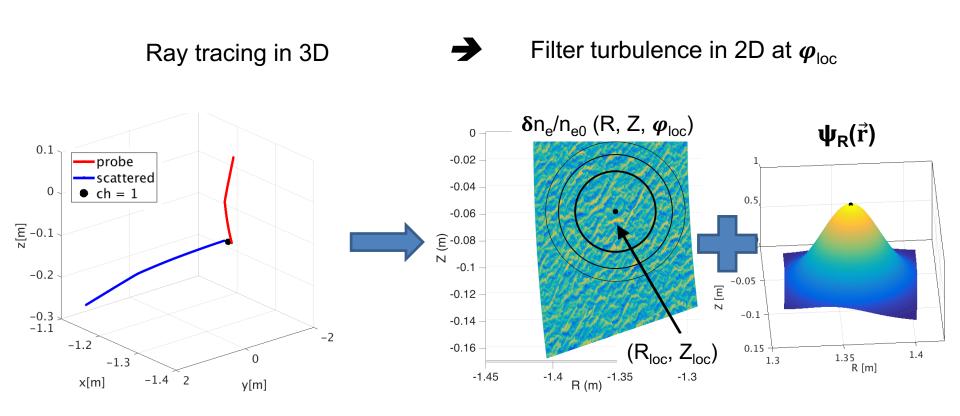
- Extensive Box size scans show Hybrid Scale Simulation is trade off:
 - Computational cost ~ 0.5 M CPU h
 - Correctly resolving experimental k (does not fully overlap probe beam)



The Need for a Synthetic Diagnostic

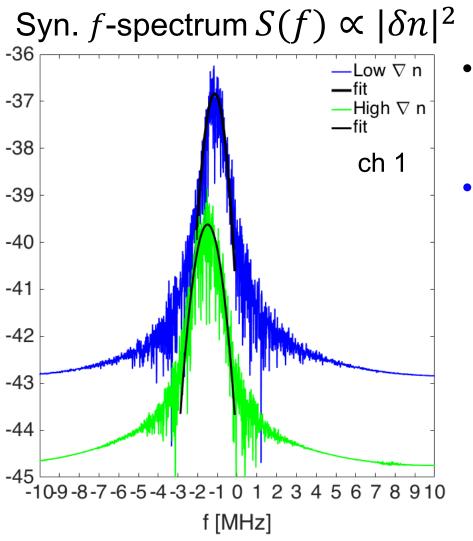
Goal: A quantitative comparison between experiment and simulation of electron scale turbulence (f and k-spectrum).

Experiment in lab frame, simulation in plasma frame → Doppler shift
 Limited spatial and wavenumber resolution
 → a synthetic diagnostic



Previous Work on Synthetic High-k Diagnostic on NSTX

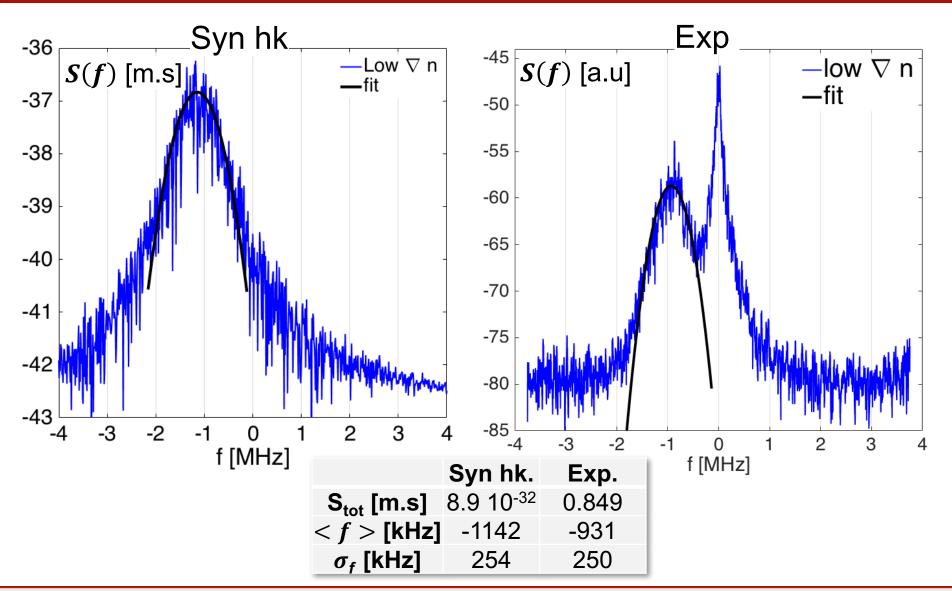
- Previous synthetic high-k scattering was implemented with GTS (*cf.* Poli PoP 2010, Poli APS 2010).
- Synthetic spectra was affected by 'systematic errors' (simulation run time, low k_θ detected, scattering localization)
- No quantitative agreement was obtained between experimental and simulated frequency spectra.



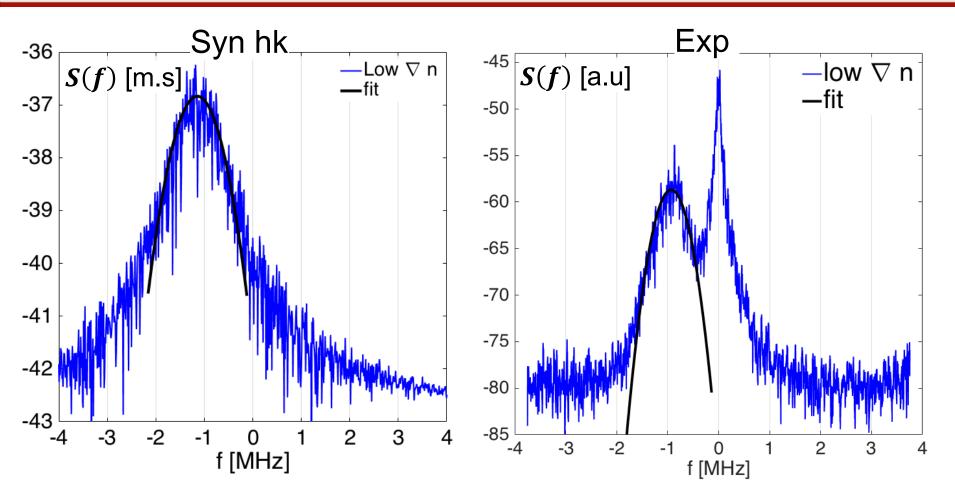
New Synthetic Diagnostic Implementation Real Space: 2D (R, Z) model

- Gaussian filter in space is applied to raw GYRO density fluct. amplitude
- Obtain a filtered time series of density fluctuations $\delta \hat{n}_e^{syn}(t)$ (analyzed the same way as experiment)

Frequency Analysis of Synthetic Time Series $\delta \hat{n}_e^{syn}(t)$ Provides Synthetic Diagnostic *f*-Spectrum *S*(*f*)



• Gaussian fit $\rightarrow S_{tot}$, $< f >, \sigma_f$


Low ∇n → High ∇n

- Decrease in S_{tot} → stabilization of ETG
- Higher frequency $f \rightarrow$ Doppler shift $f_D = \vec{k} \cdot \vec{v} \approx n\omega_0$. Increase in ω_0 (similar \vec{k})
- Higher spectral width σ_f Increase in ω_0 (ω_0 widens spectrum in lab frame)

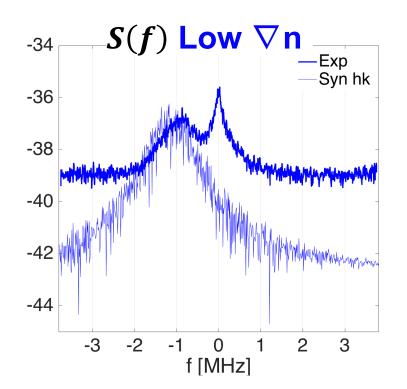
Analyze Synthetic and Exp. Spectrum to Compare S_{tot} , < f >, σ_f at Low ∇n

Analyze Synthetic and Exp. Power to Compare S_{tot} , < f >, σ_f at Low ∇ n



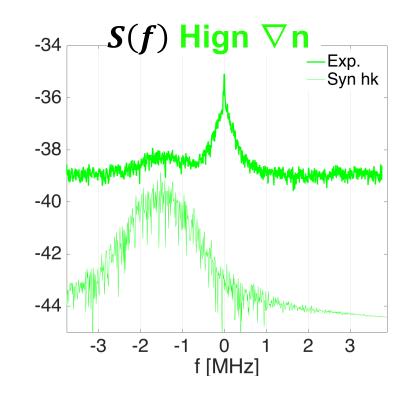
- Quantitative agreement < f >, $\sigma_f (\pm 20\%)$
- Exp. NOT absolutely calibrated \rightarrow cannot quantitatively compare S_{tot}

Mean Frequency and Spectral Width Quantitatively Agree with Experiment at High ∇ n (a/Ln=4)


Mean Frequency and Spectral Width Quantitatively Agree with Experiment at High ∇ n (a/Ln=4)

Experiment

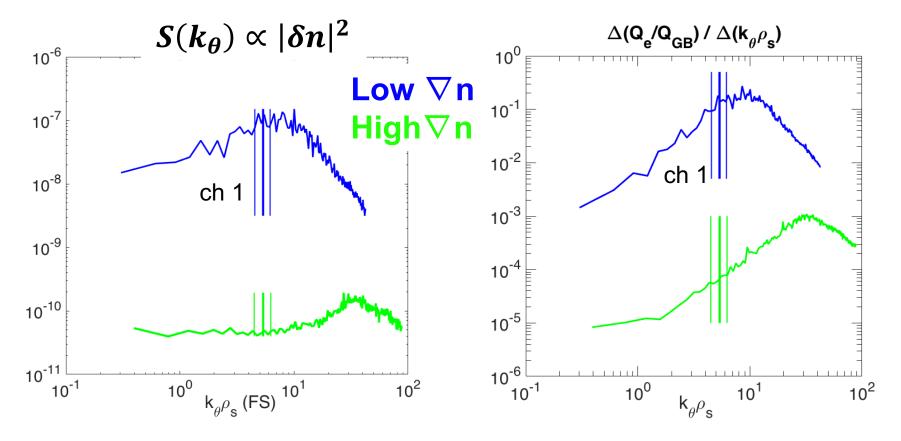
- Quantitative agreement $< f >, \sigma_f (\pm 20\%)$
- Rescale S_{tot}^{exp} for quantitative comparisons


Rescale $S(f)^{exp}$ to Quantitatively Compare Power at Low and High ∇n

Rescale $S(f)^{exp}$ at Low ∇n

Low $\nabla \mathbf{n}$

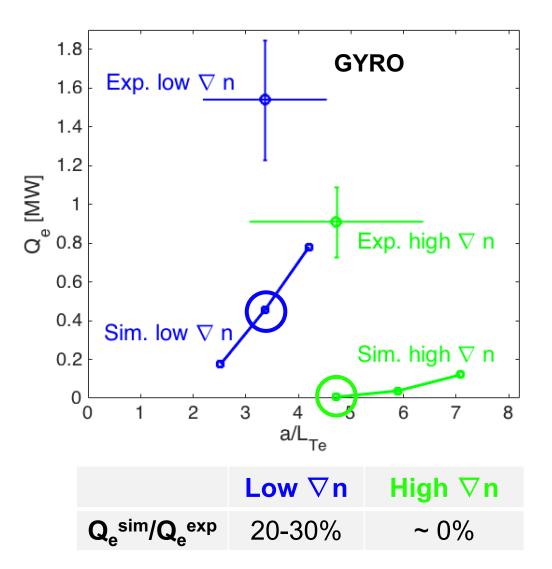
Increased noise level in exp.



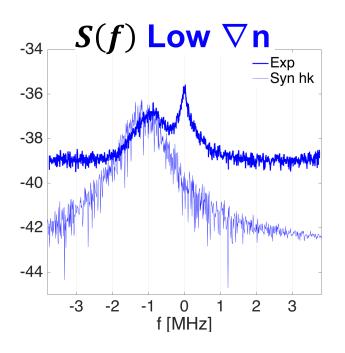
→ Same scaling factor at High ∇ n

High∇n

• Underpredicted S_{tot} X 40 !!


Measurement k is Close to Spectral Peak at Low ∇ n, Far From Spectral Peak at High ∇ n

Low $\nabla n \rightarrow High \nabla n$


- Decrease in spectral density $S(k_{\theta}) + Q_e \rightarrow \text{stabilization of ETG}$
- Shift spectral peak to higher k_{θ}

Recall: Nonlinear Electron Scale GYRO Simulations Cannot Explain Experimental Electron Heat Flux

Conclusions: Synthetic High-k Matches $< f >, \sigma_f$ at Low ∇ n and High ∇ n, Underpredicts S_{tot} at High ∇ n

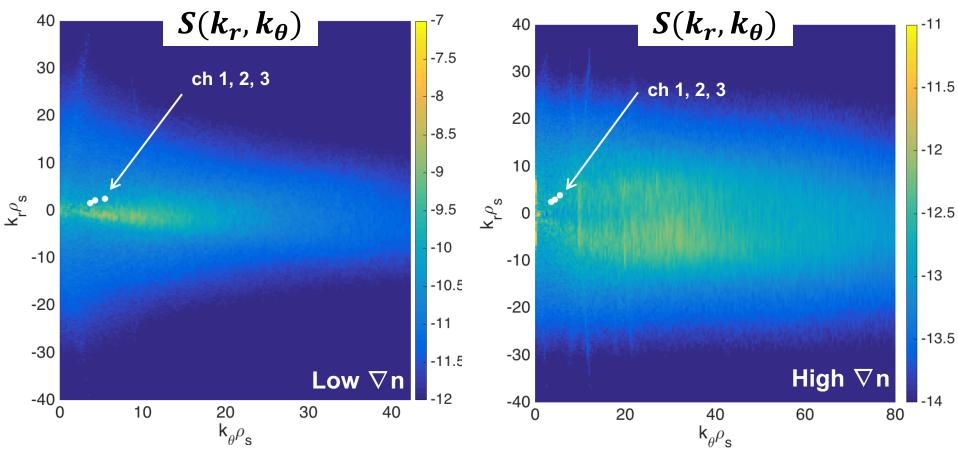
S(*f*) Hign -34 Exp. Svn hk -36 -38 -40 -42 -44 -3 -2 -1 2 3 0 f [MHz]

- Q_e^{sim} ~ 20-30% Q_e^{exp}
- Sim. *could* be capturing correct turbulence
- Should consider additional sources of transport (ion scale, Multi-scale, AEs, ...)
- Sim. **NOT** capturing correct turbulence
- Could expect increase in Q_e^{sim} x40
- **Multi-scale** might increase turbulence level

Next Steps

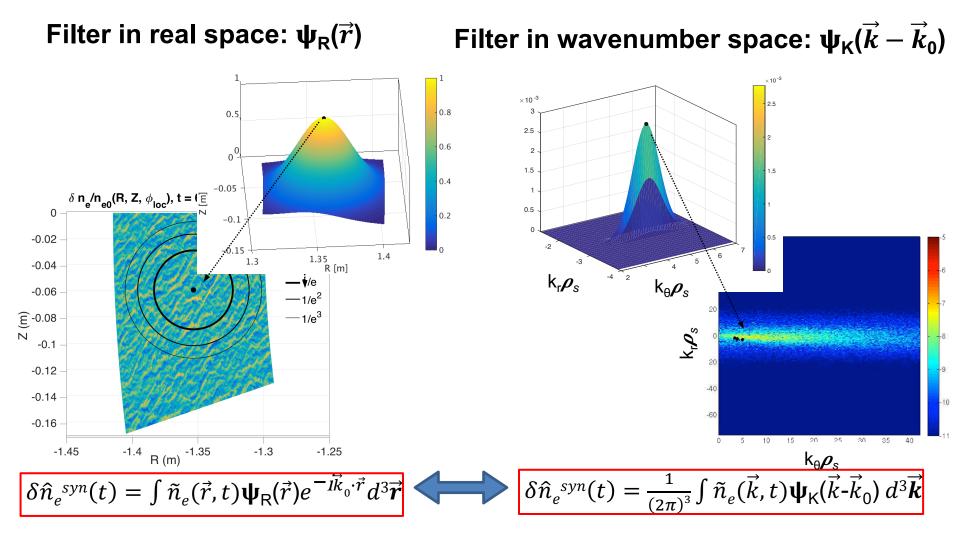
Future Directions

- Quantitatively compare k-spectrum of fluctuations.
- Ion-scale transport GYRO shows Q_e^{ion scales} ~ 0 → CGYRO
- Implement a 3D synthetic diagnostic to more accurately model scattering volume
- Multi-scale simulation + quantitative comparisons with Synthetic Diagnostic


data data 0.2 data data 0.15 data ch1 0.1 ·1/e $1/e^{2}$ 0.05 (m) Z $-1/e^{3}$ probe 0 scattered -0.05 -0.1-0.150.2 -1.50.1 -1.4 -0.1 0 -1.3 -1.2 -1.1R (m)

 $\delta n_{e}/n_{e0}$, t = 28.94, phi = 172.0327 degrees

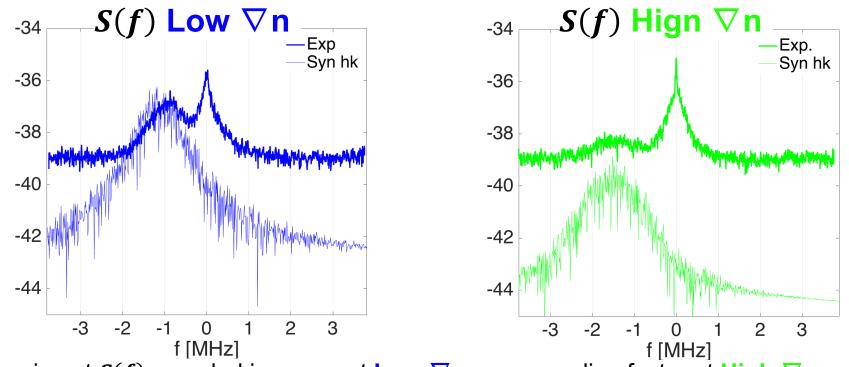
Questions & Discussion


Wavenumber Spectral Range at Low and High $\nabla \mathbf{n}$

Turbulence from Low $\nabla n \rightarrow High \nabla n$

- Decrease in spectral density S → stabilization of ETG
- Shift spectral peak to higher k_{θ}

1.B. Synthetic Density Fluctuations can be computed in real-space or k-space



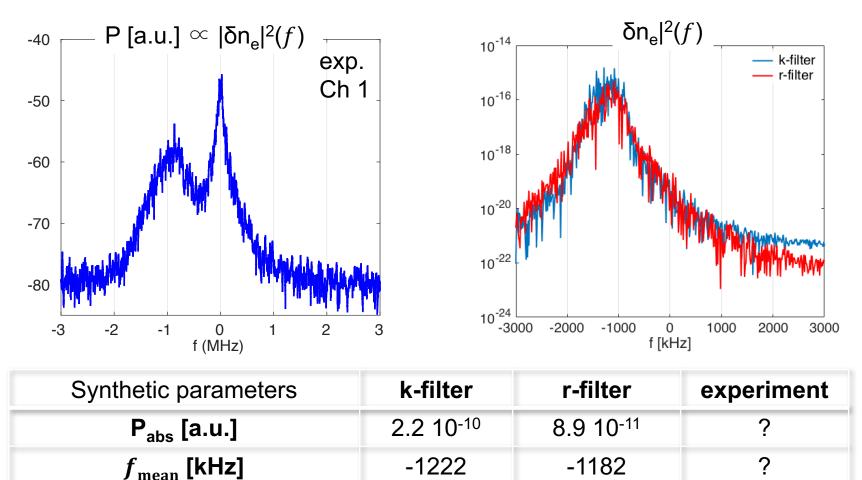
Obtain a time series of turbulent density fluctuations $\delta \hat{n}_e^{syn}(t)$

NSTX-U

PSFC Pizza Seminar, Fall 2017

Rescale Exp. Power to Quantitatively Compare Amplitude at Low and High ∇n

Experiment S(f) rescaled in power at Low ∇n , same scaling factor at High ∇n


Low $\nabla \mathbf{n} \rightarrow \mathbf{Q}$ uant. agreement $\langle f \rangle, \sigma_f$

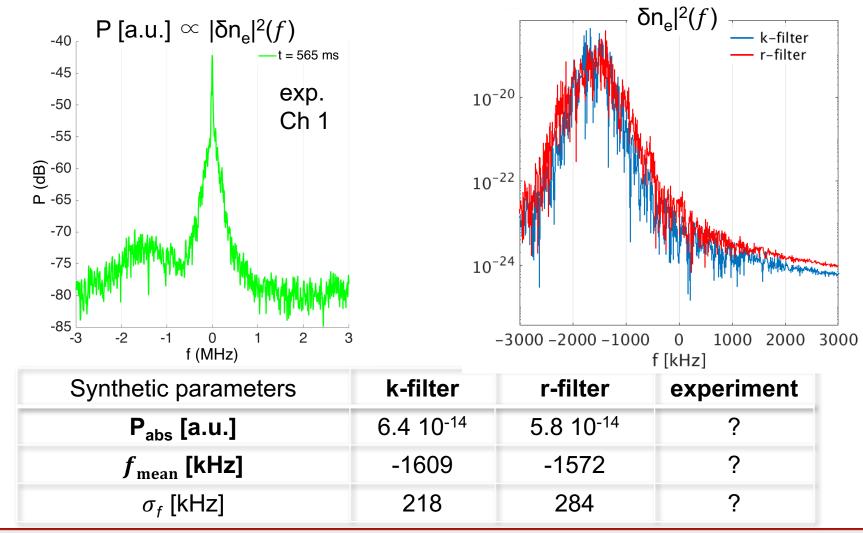
	Syn hk	Exp.	Syn hk	Exp.
P _s [a.u.]	8.9 10 ⁻³²	0.849	1.9 10-34	0.069
< <i>f</i> > [kHz]	-1142	-931	-1501	-1442
σ_f [kHz]	254	250	344	447

High $\nabla \mathbf{n} \rightarrow$ Quant. agreement $< f >, \sigma_f$ \rightarrow Underpredicted P_s x 40

1.D. First Preliminary Comparisons with Experiment

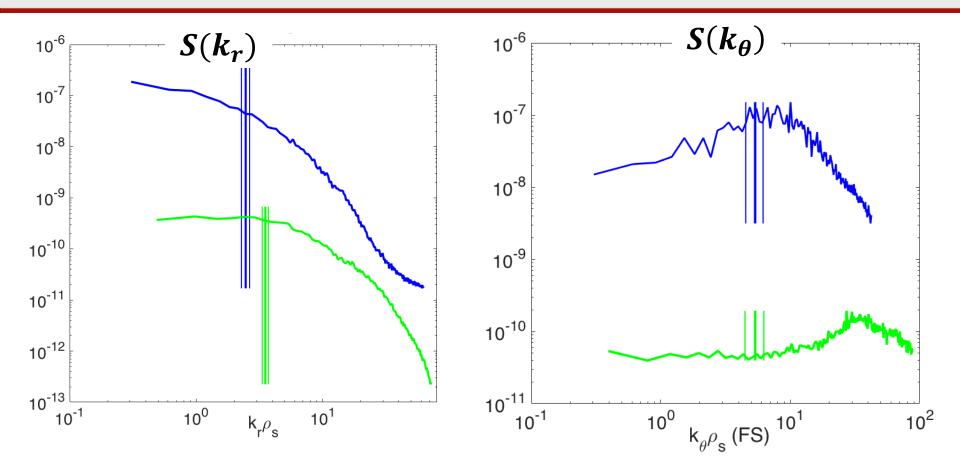
Low ∇n (a/Ln=1)

 σ_f [kHz]


194

208

?


1.D. First Preliminary Comparisons to Experiment

High∇n (a/Ln=4)

NSTX-U

Wavenumber Measurement Range at Low and High $\nabla \mathbf{n}$

Turbulence from Low $\nabla n \rightarrow High \nabla n$

- Decrease in spectral density S → stabilization of ETG
- Shift spectral peak to higher k_{θ}

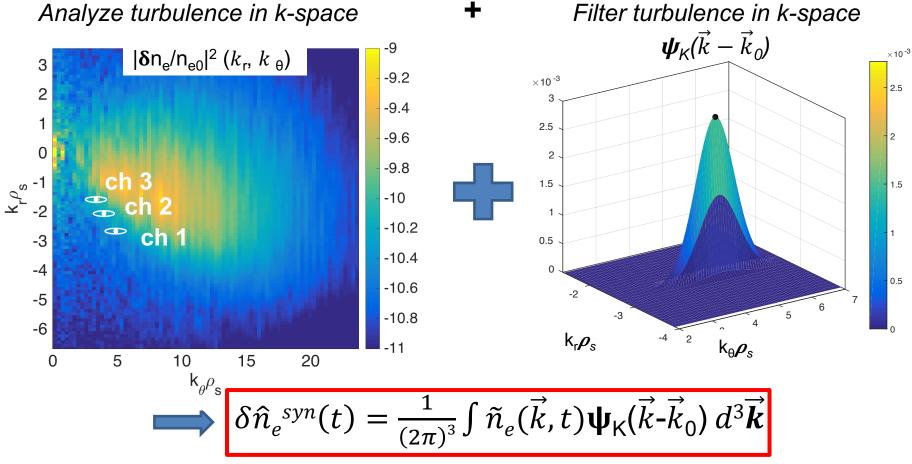
Numerical Resolution Comparison with Traditional Ion Scale, Electron Scale and Multiscale Simulation

Poloidal wavenumber resolution ($k_{\theta}\rho_{s}$ here means $k_{\theta}\rho_{s}^{FS}$)

	$\Delta k_{\theta} \rho_s$	$k_{\theta}\rho_{s}^{max}$	n
lon scale	~0.05	~1	~20-30
e- scale	~1-1.5	~50	~50
Multi-scale	~0.1	~40	~500
High res. e- scale	0.3	43	142

Radial resolution Δr - radial box size L_r

	Δr	L _r [ρ _s]	n _r
lon scale	~ 0.5 ρ _s	~80-100	~ 200
e- scale	~ 2 ρ _e	~ 6-8	~ 200
Multi-scale	~ 3 ρ _e	~ 40-60	~ 1000
High res. e- scale	2.5 ρ _e	20	512


Time analysis					
	Hybrid e-	MS			
(n _r ,n)	(142,512)	(500,1000)			
t [a/c _s]	30	300			
T [M CPUh]	0.5	~ 50			

Minimum MS

- More expensive at High ∇n
 - Longer t, EM, n
- MS will not scale linearly with (n_r, n)
 - Expect x1.5, x2 ...
- CGYRO could scale better

Synthetic Diagnostic for Coherent Scattering Traditionally Implemented in k-space

Obtain a filtered time series of density fluctuations $\delta \hat{n}_e^{syn}(t)$

Two Equivalent Ways to Perform a Synthetic Diagnostic for High-k Scattering System

k-space filtering vs. real-space filtering

- Mathematically equivalent formulations
- Past work only used k-space filtering (F. Poli PoP 2010)

k-space filtering - Selection of k

- Traditional way to interpret filtered scattering spectra.
- Delicate to compute (wavenumber mapping) $(k_R, k_Z, k_{\varphi}) \rightarrow (k_r, k_{\theta}, k_{\varphi})$
- Code-dependent.

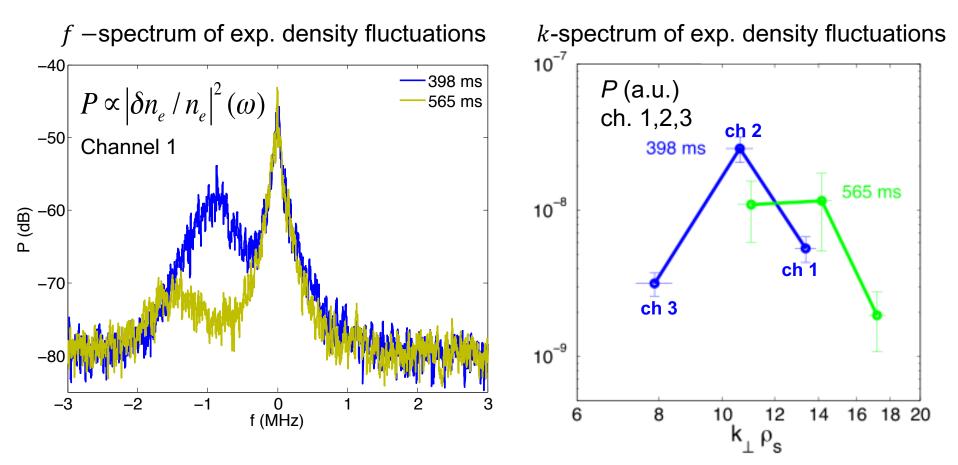
New: Real space filtering

- Common principle to all codes.
- Easier to implement and understand (no k-mapping).

Computing both methods we gain confidence in simulated synthetic spectra

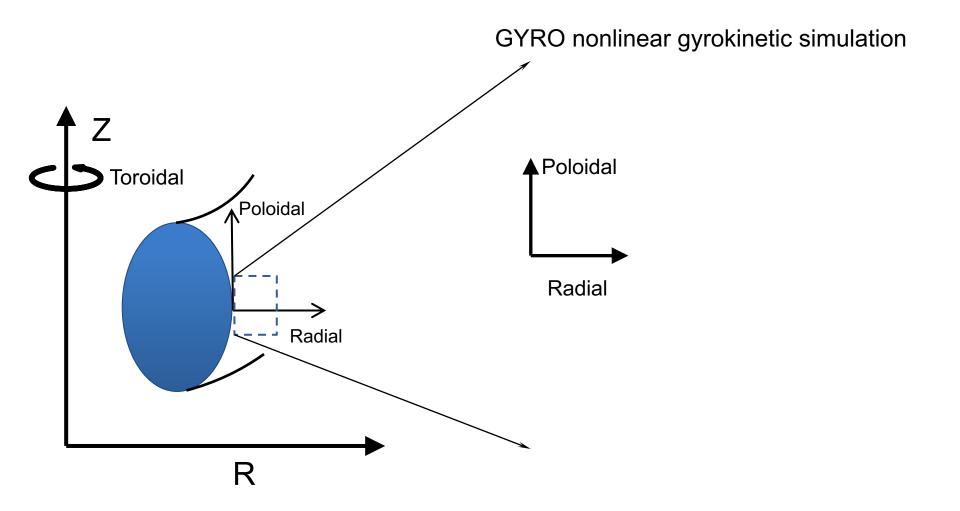
Synthetic Diagnostic for the High-k Scattering System

Preliminary Steps:


- 1. High-k scattering diagnostic \rightarrow experimental density fluctuation spectra $|\delta n_e|^2(\omega)$
- 2. Location of scattering + detected wavenumber \rightarrow Ray tracing code:
 - Scattering location + resolution
 - Turbulence wavenumber + resolution

 $\begin{array}{l} (\mathsf{R}_{\mathsf{loc}}, \, \mathsf{Z}_{\mathsf{loc}}) + (\Delta \mathsf{R}_{\mathsf{loc}}, \, \Delta \mathsf{Z}_{\mathsf{loc}}) \\ (\mathsf{k}_{\mathsf{R}}^{\mathsf{exp}}, \, \mathsf{k}_{\mathsf{Z}}^{\mathsf{exp}}) + (\Delta \mathsf{k}_{\mathsf{R}}^{\mathsf{exp}}, \, \Delta \mathsf{k}_{\mathsf{Z}}^{\mathsf{exp}}) \end{array}$

3. Model of Turbulence \rightarrow Gyrokinetics


Run a nonlinear gyrokinetic simulation (used GYRO here) capturing scattering location + resolving the experimentally measured wavenumber.

High-k Scattering Diagnostic Provides the Frequency and Wavenumber Spectrum of Electron Scale Turbulence

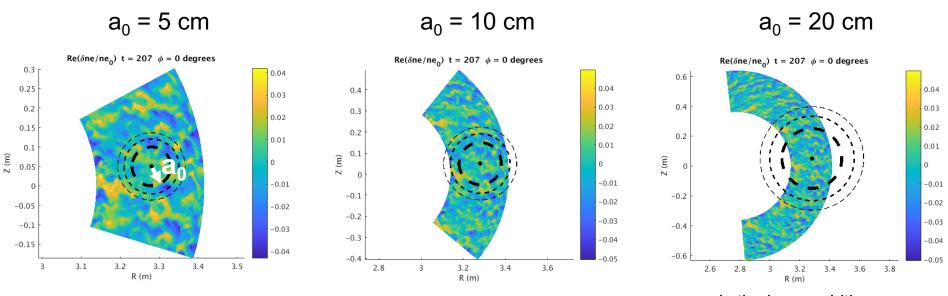
- High-k scattering data of NSTX NBI heated H-mode plasma (cf. Ruiz Ruiz PoP 2015)
- Frequency analysis of scattered power → frequency spectrum.
- Different channels \rightarrow different k \rightarrow wavenumber spectrum of turbulence

Turbulent Fluctuations are Thought to Dominate Heat Losses in Tokamaks

Synthetic Diagnostic applied to Cyclone Base Case (not experiment! yet ...)

Cyclone base case physical parameters:

- 2 kinetic species (DK e-)
- ES
- Periodic BC
- Flat profiles
- S-alpha, non-shifted geometry circular geometry
- Doppler shift M = 0.1

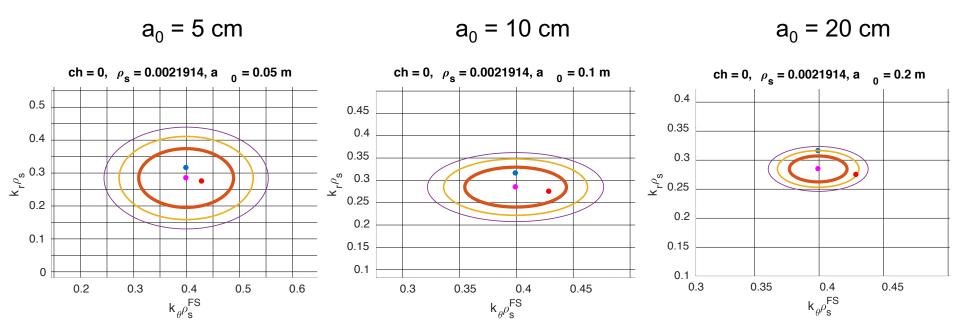

Numerical resolution parameters

$\Delta k_x \rho_s = 0.049$	$\Delta k_{y} \rho_{s} = 0.049$			
$k_x \rho_s^{max} = 3.14$	$k_{y}\rho_{s}^{max} = 3.093$			
$L_{x}/\rho_{s} = 128$	$L_{y}/\rho_{s} = 128$			
dn = 8	Bm = 4.94			
$\Delta x/\rho_s = 0.5$	Lx/a = 0.28			
n _x = 256	n _n = 64			
Experimental beam width:				
$\Delta x = 5, 10, 20 \text{ cm}$				

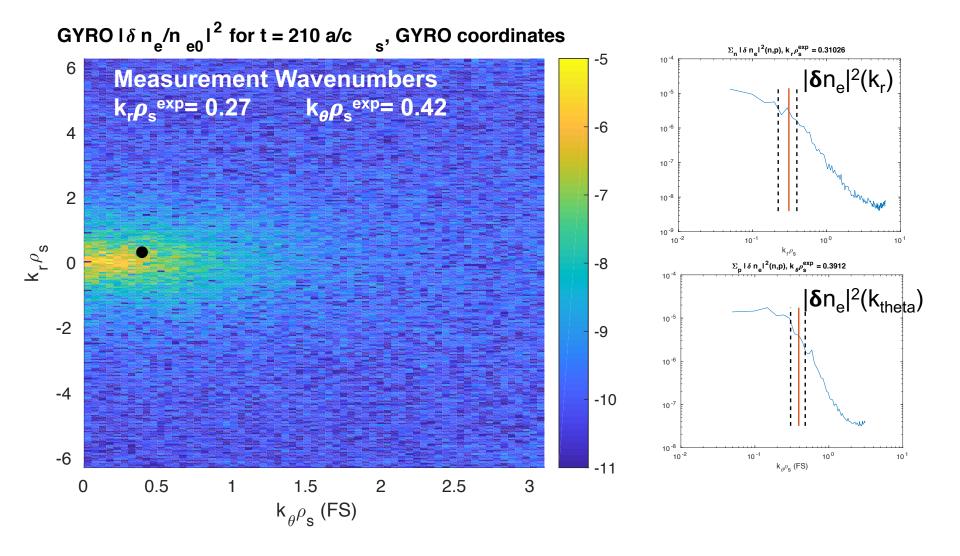
 $\Delta k_x \rho_s^{\text{beam}} =$

 $\Delta k_v \rho_s^{beam} =$

Goal: establish sensitivity of synthetic signal to beam width To what extent do we need a simulation domain that covers the full microwave beam?

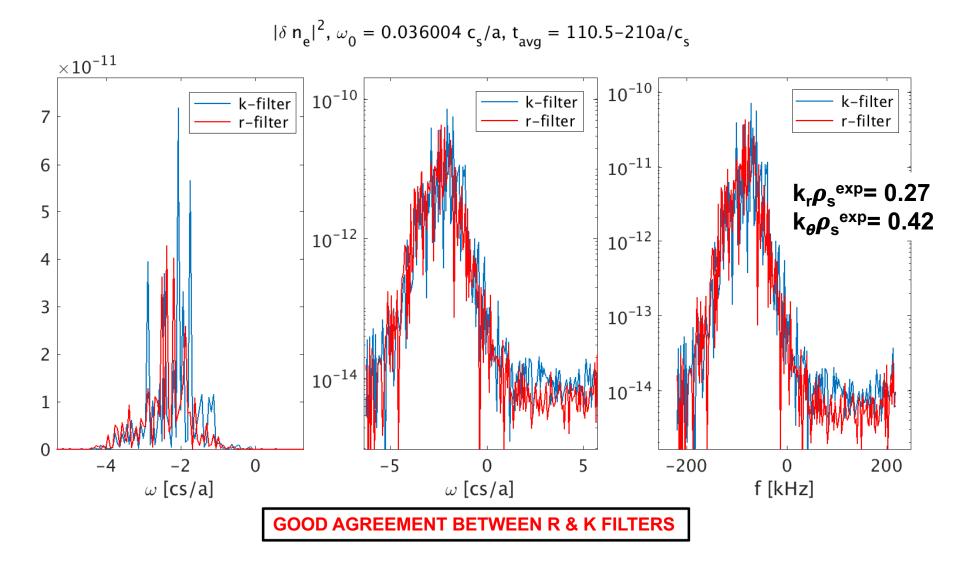


a₀ is the beam width



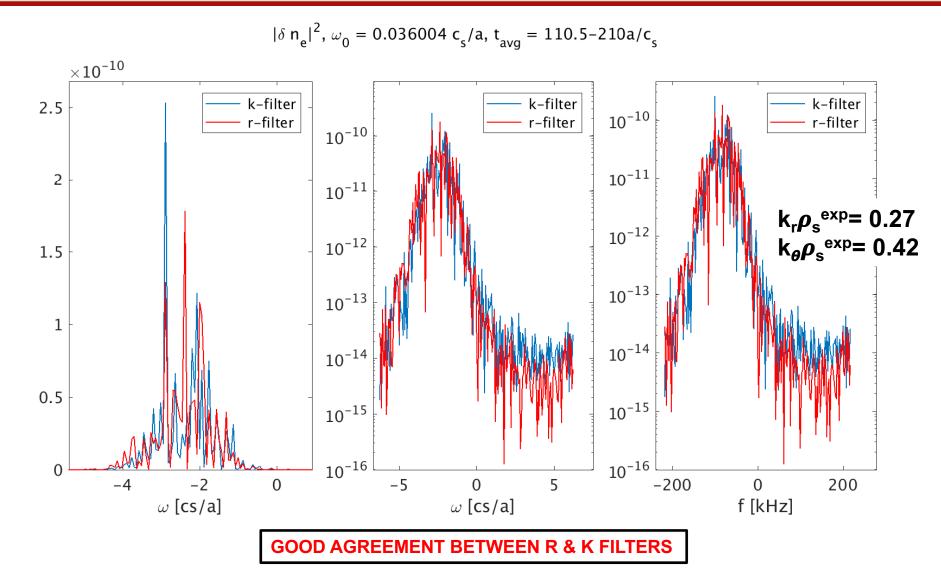
Wavenumber Space Filters – 2D

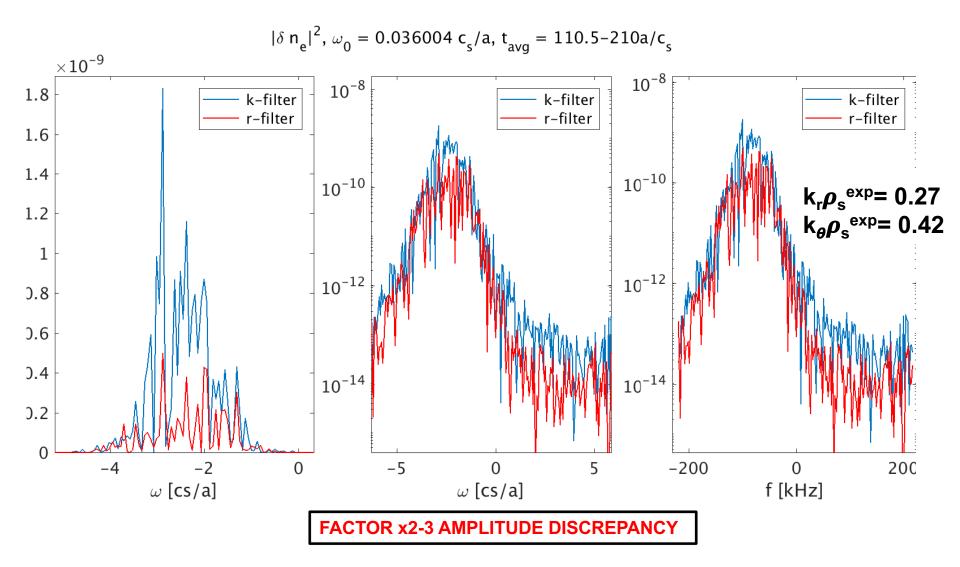
Measurement Wavenumbers $k_r \rho_s^{exp} = 0.27 \quad k_{\theta} \rho_s^{exp} = 0.42$


Wavenumber measurement region

NSTX-U

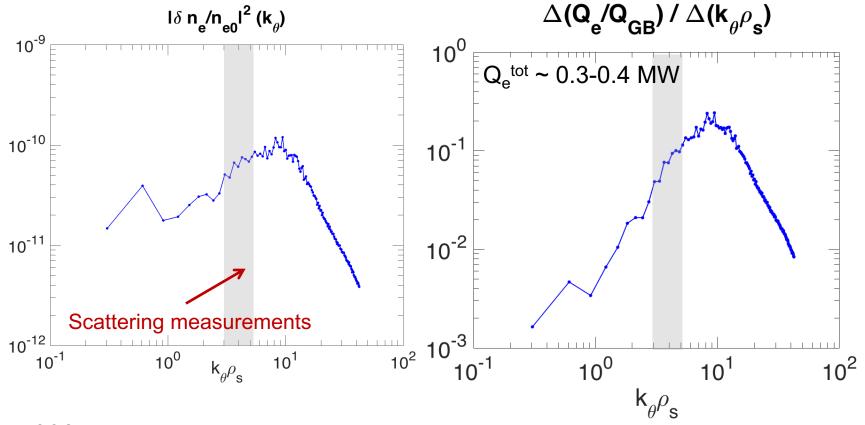
PSFC Pizza Seminar, Fall 2017


Synthetic signal: $a_0 = 5$ cm


NSTX-U

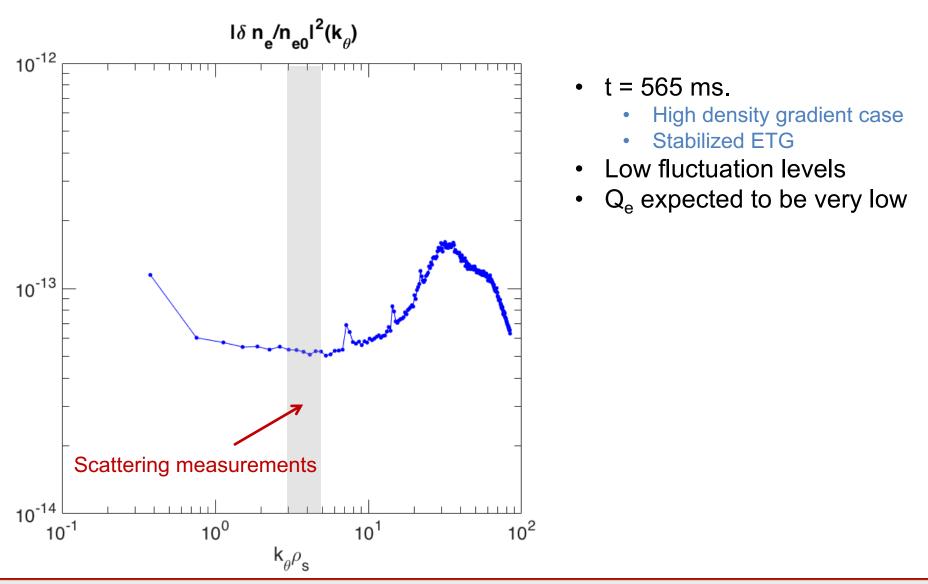
Synthetic signal: $a_0 = 10$ cm

Synthetic signal: $a_0 = 20$ cm

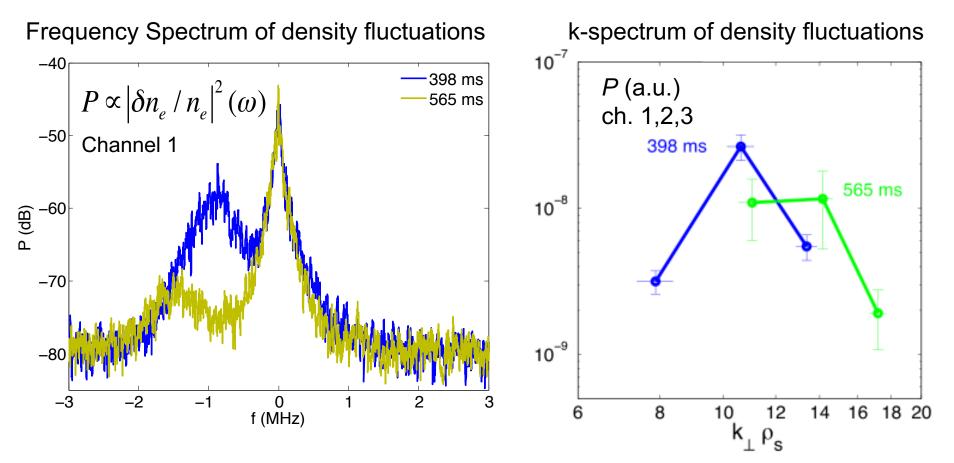


Conclusions from Cyclone Base Case Tests

- We have shown good agreement between two alternate ways to approach a scattering synthetic diagnostic
 - filtering in real space (r-filter)
 - filtering in wevenumber space (k-filter)
- The beam width was included in the full simulation domain at $a_0 = 5$ cm, and completely exceeded sim domain at $a_0 = 20$ cm.
- Agreement between r & k filters was best at $a_0 = 5$ & 10 cm.
- At a₀ = 20 cm, the r-filter was a factor 2-3 smaller amplitude than the k-filter method (possibly due to beam exceeding sim domain at a₀ = 20 cm)

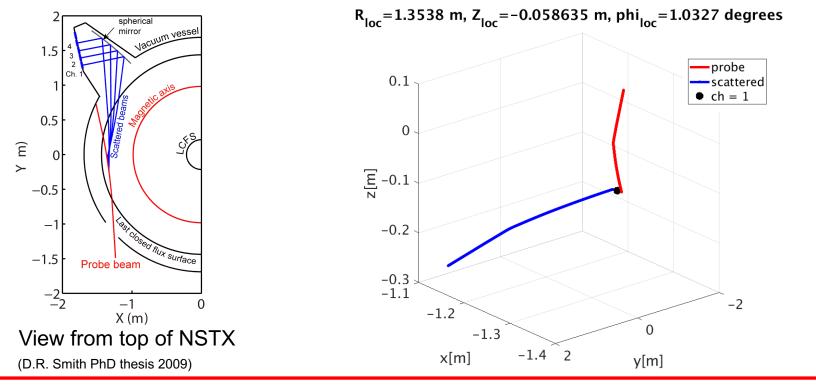

Experimental Wavenumbers Produce non-negligible transport

- t = 398 ms
 - Low density gradient case
 - Unstable ETG


- k^{exp} close to density and Q_e spectral peak.
- Q_e consistent with previous standard escale sim results(Q_e~0.4 MW)

Experimental Wavenumbers Produce non-negligible transport

NSTX-U


1. High-k Scattering Diagnostic Provides the Frequency and Wavenumber Spectrum of Electron Scale Turbulence

- High-k scattering data of NSTX NBI heated H-mode plasma (cf. Ruiz Ruiz PoP 2015)
- Frequency analysis of scattered power → frequency spectrum.
- Different channels → different k → wavenumber spectrum of turbulence

2. Ray Tracing

Solve Ray tracing equations, Appleton-Hartree approximation (propagation of high freq. waves in plasma)

Obtain:

- Scattering location + resolution
- Turbulence wavenumber + resolution

 $(\mathsf{R}_{\mathsf{loc}}, \mathsf{Z}_{\mathsf{loc}}) + (\Delta \mathsf{R}_{\mathsf{loc}}, \Delta \mathsf{Z}_{\mathsf{loc}}) \\ (\mathsf{k}_{\mathsf{R}}^{\mathsf{exp}}, \mathsf{k}_{\mathsf{Z}}^{\mathsf{exp}}) + (\Delta \mathsf{k}_{\mathsf{R}}^{\mathsf{exp}}, \Delta \mathsf{k}_{\mathsf{Z}}^{\mathsf{exp}})$

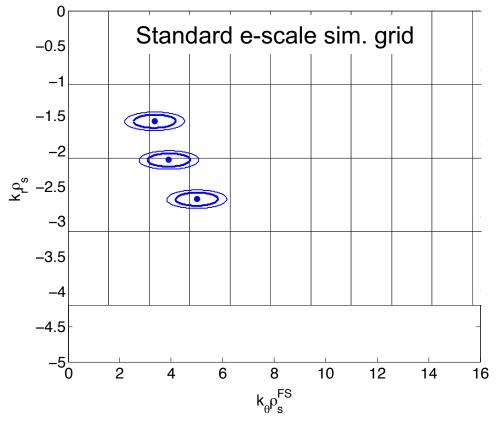
Results of wavenumber mapping

Experiment (shot 141767, ch1)

Cylindrical geometry (R,Z, φ)

Ray Tracing: $k_{R} = -18.57 \text{ cm}^{-1}$ $k_{Z} = 4.93 \text{ cm}^{-1}$

 $\rho_s^{exp} = 0.7 \text{ cm}$


<u>GYRO</u>

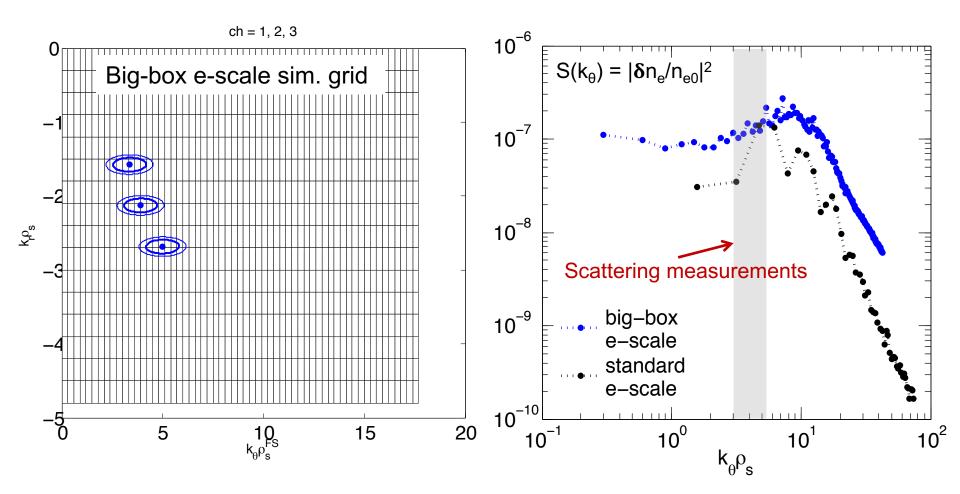
Field aligned (r, θ, φ)

 ρ_s^{GYRO} = 0.2 cm

- Next step is to run a GYRO simulation that resolves the experimental wavenumbers and the high-k ETG spectrum.
- Old high-k system is sensitive to k that are closer to the spectral peak of fluctuations than previously thought → more transport relevant!

Mapped $(k_R, k_Z)^{exp}$ to GYRO $(k_r \rho_s, k_\theta \rho_s)_{GYRO}$ in Standard electron Scale Simulation

- Blue dots: (k_rρ_s, k_θρ_s)^{exp} of channels
 1, 2, 3 of high-k system.
- Ellipses are e⁻¹ and e⁻² amplitude of (k_r, k_θ) gaussian filter (simplified selectivity function)

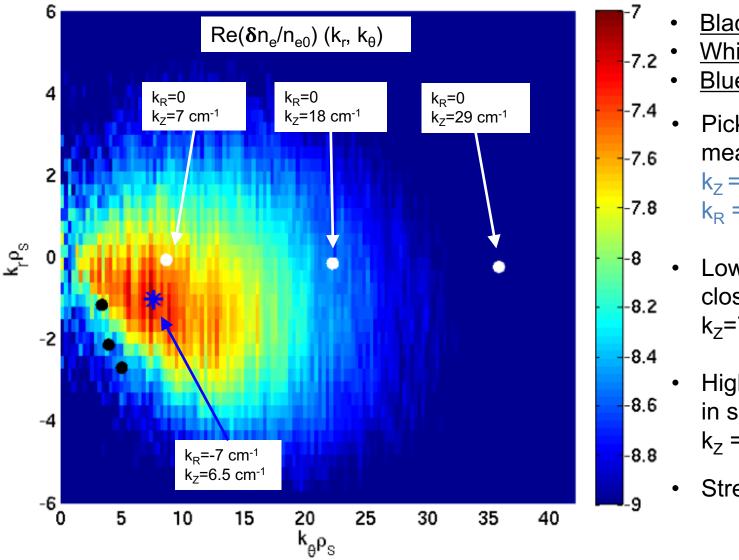

$$F(k_r, k_{\theta}) = F_r(k_r) F_{\theta}(k_r)$$

$$F_r(k_r) = \exp\left(-(k_r - k_r^{\exp})^2 / \Delta k_r^2\right)$$

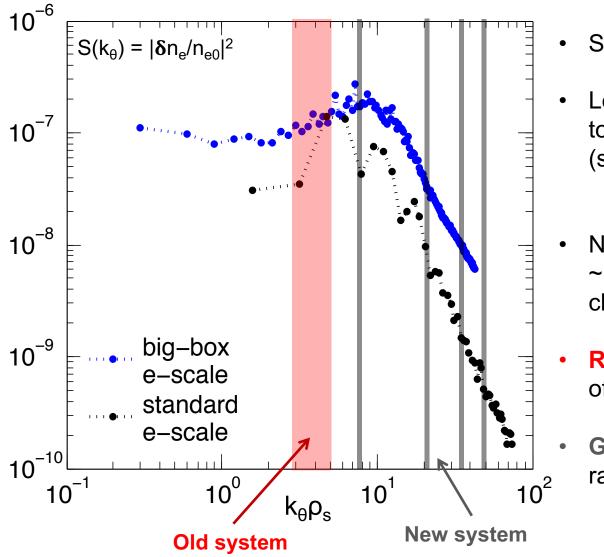
$$F_{\theta}(k_{\theta}) = \exp\left(-(k_{\theta} - k_{\theta}^{\exp})^2 / \Delta k_{\theta}^2\right)$$

Numerical grid of standard e- scale simulation does NOT accurately resolve the experimental wavenumber, wavenumber grid is too sparse (*cf.* Guttenfelder PoP 2011).

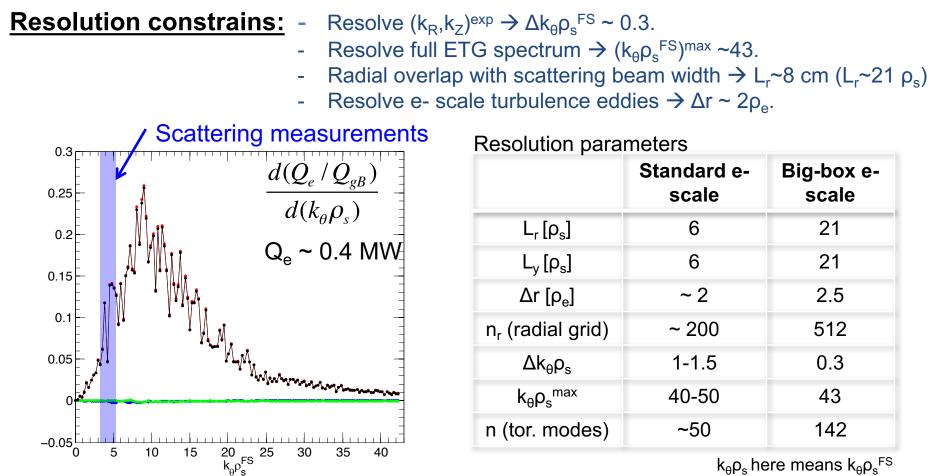
Resolving (k_R,k_Z)^{exp} + Complete electron Scale Spectrum Requires a Big-Simulation-Domain e- Scale Simulation


 Big-box simulation spectra show well resolved (k_R,k_Z)^{exp} and electron scale spectrum.

Operating Space of New High-k Scattering Diagnostic


- A new high-k scattering system is being designed for NSTX-U to detect streamers based on previous predictions: Old high-k system: high-k_r, intermediate k_θ New high-k system: high-k_θ, intermediate k_r → streamers
- My goal: project the operating space of the new high-k scattering diagnostic using the mapping I implemented.
- **Assumptions**: k-mapping of new high-k scattering system is based on:
 - Experimental turbulence wavenumbers from previous studies (Barchfeld APS 2015, UC-Davis/NSTX-U Review of Fluct. Diagnostics May 2016).
 k_z = 7-40 cm⁻¹
 k_R = 0 cm⁻¹
 → High-k_θ scattering diagnostic.
 - 2. Current plasma conditions (B ~ 0.5 T, T_e ~ 0.4 keV).

Mapped Wavenumbers of New High-k to GYRO 2D Fluctuation Spectrum


- <u>Black dots</u>: old hk
 <u>White dots</u>: new hk
 <u>Blue star</u>: streamers
 <u>Dicked k's in predicts</u>
- Picked k's in predicted measurement range k_z = 7, 18, 29, 40 cm⁻¹ k_R = 0 cm⁻¹
 - Lowest-k channel closest to streamers k_z=7 cm⁻¹
- Highest-k not captured in simulation k_z = 40 cm⁻¹
- Streamers: finite k_R $|k_R| \sim |k_Z|$

Mapped Wavenumbers of New High-k Diagnostic to GYRO k_{θ} Fluctuation Spectrum

- Spectrum is integrated in k_r.
- Lowest-k channel will be closest to peak of fluctuation spectrum (streamers) k_R=0, k₇=7 cm⁻¹
- Need to resolve very high-k ($k_{\theta}\rho_{s}$ ~ 50) to capture highest-k channel.
- Red band: measurement range of old system.
- **Gray bands**: measurement range of new system.

Resolving (k_R,k_Z)^{exp} + Complete ETG Spectrum Requires a Big-Simulation-Domain e- Scale Simulation

- Spectra show well resolved $(k_R, k_Z)^{exp}$ and ETG spectrum (*cf.* slide 22).
- Experimental wavenumbers produce non-negligible δn_e and Q_e consistent with previous e- scale simulation results ($Q_e \sim 0.4$ MW).

Numerical Resolution Details of Ion and Electron Scale Simulations Presented

Experimental profiles used as input

Local, flux tube simulations performed at scattering location (r/a~0.7, R~136 cm).

- Only electron scale turbulence included.
- Experimental T_e, n_e, T_i, rotation, etc.
- 3 kinetic species, D, C, e (Z_{eff}~1.85-1.95)
- Electromagnetic: $A_{\parallel}+B_{\parallel}$, $\beta_e \sim 0.3$ %.
- Collisions (v_{ei} ~ 1 c_s/a).
- ExB shear (γ_{E} ~0.13-0.16 c_s/a) + parallel flow shear (γ_{p} ~ 1-1.2 c_s/a)
- Fixed boundary conditions with $\Delta^{b} \sim 8/1.5 \rho_{s}$ buffer widths (ion/e- scale).

lon scale resolution parameters

- $L_r \propto L_y = 74 \times 56 \rho_s (L/a \sim 0.4)$.
- $n_r x n = 192 x 14$.
- $k_{\theta} \rho_s^{FS}$ [min, max] = [0.1, 1.4]
- k_rρ_s [min, max] =[0.85, 4]
- $[n_{\parallel}, n_{\lambda}, n_{e}] = [14, 12, 12]$

<u>Big-box e- scale</u> resolution parameters

- $L_r \times L_y = 21 \times 21 \rho_s (L/a \sim 0.16)$.
- $n_r x n = 512 x 142$.
- $k_{\theta}\rho_{s}^{FS}$ [min, max] = [0.3, 43]
- $k_r \rho_s$ [min, max] = [0.3, 38]
- $[n_{\parallel}, n_{\lambda}, n_{e}] = [14, 12, 12]$
- High-resolution electron scale runs presented here are NOT multiscale:
- Ions are not resolved correctly $\Delta k_{\theta} \rho_s \sim 0.3$, $L_r \propto L_y = 21 \times 21 \rho_s$.
- Simulation ran only for electron time scales ($\sim 20a/c_s$), ions are not fully developed.

Given from experiment (ray tracing) $k_R = -1857 \text{ m}^{-1}, k_Z = 493 \text{ m}^{-1}$ (channel 1 of high-k diagnostic)

Get from GYRO (internally calculated)

- $(\rho_s)_{GYRO} \sim 0.002 \text{ m} (B_unit \sim 1.44)$
- |∇r| ~ 1.43, κ ~ 2

Apply mapping (simplified approx.)

$$\begin{cases} (k_r \rho_s)_{GYRO} = k_R * (\rho_s)_{GYRO} / |\nabla r| \\ (k_\theta \rho_s)_{GYRO}^{loc} = k_Z * \kappa * (\rho_s)_{GYRO} & \text{cf. slide 15} \end{cases}$$

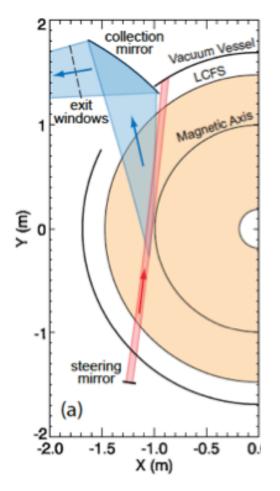
Obtain experimental wavenumbers mapped to GYRO

$$(k_r \rho_s)_{GYRO} \sim -2.6$$

 $(k_\theta \rho_s)_{GYRO} \sim 2.0$

Summary of Coordinate Mapping

The mapping in real-space: obtain (r_{loc}, θ_{loc}) from (R_{loc}, Z_{loc})


$$\begin{cases} R(r_{loc}, \theta_{loc}) = R_{loc} \\ Z(r_{loc}, \theta_{loc}) = Z_{loc} \end{cases}$$

The mapping in k-space: obtain (k_{p}, k_{θ}) from $(k_{R}, k_{Z})^{exp}$

$$\begin{cases} k_{\rm r} - \frac{r}{q} \frac{\partial v}{\partial r} k_{\theta} = \frac{\partial R}{\partial r} k_{R} + \frac{\partial Z}{\partial r} k_{Z} \\ - \frac{r}{q} \frac{\partial v}{\partial \theta} k_{\theta} = \frac{\partial R}{\partial \theta} k_{R} + \frac{\partial Z}{\partial \theta} k_{Z} \end{cases}$$

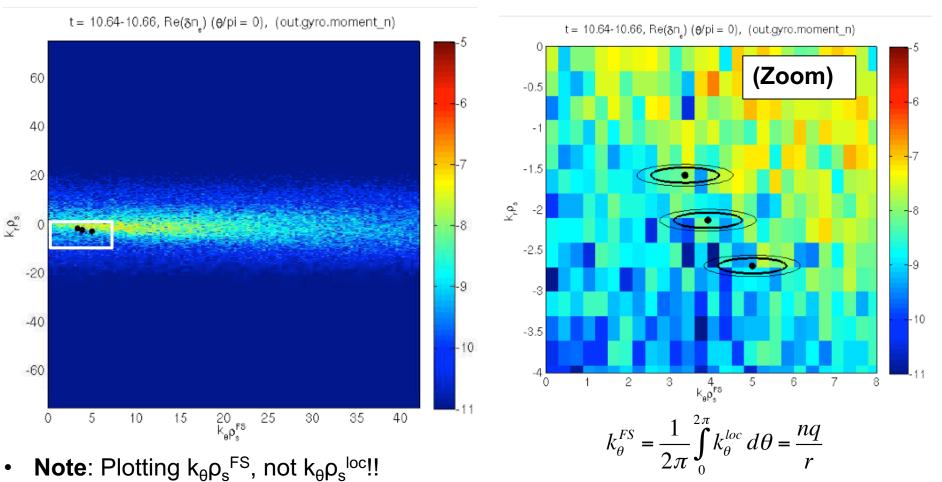
Operation of Old High-k Microwave Scattering Diagnostic System at NSTX

View from top of NSTX (D.R. Smith PhD thesis 2009)

Old High-k Scattering System

• Gaussian Probe beam: 15 mW, 280 GHz,

 $\lambda_i \sim 1.07$ mm, a = 3cm (1/e² radius).


- Propagation close to midplane => k_r spectrum.
- 5 detection channels => range $k_r \sim 5-30$ cm-1 (high-k).
- Wavenumber resolution $\Delta k = \pm 0.7$ cm-1.
- Radial coverage: R = 106-144 cm.
- Radial resolution: $\Delta R = \pm 2 \text{ cm}$ (unique feature).

Previous Work on Synthetic high-k cf. Poli PoP 2010

- Previous synthetic high-k scattering was implemented with GTS (*cf.* Wang PoP 2006).
- Synthetic spectra affected by systematic errors (simulation run time, low k_{θ} detected)

Mapped Experimental Wavenumbers in GYRO Density Spectra

- Black dots: scattering (k_r, k_θ)^{exp} for channels 1,2,3 (note in these figures, spectrum is output at θ=0, and black dots correspond to θ~-0.06 rad).
- Ellipses: e^{-1} and e^{-2} amplitude of (k_r, k_{θ}) gaussian filter (simplified selectivity function).

Input Parameters into Nonlinear Gyrokinetic Simulations Presented

	t=398 t	: = 565			
r/a	0.71	0.68	R _o /a	1.52	1.59
a [m]	0.6012	0.596	SHIFT =dR ₀ /dr	-0.3	-0.355
n _e [10^19 m-3]	4.27	3.43	KAPPA = κ	2.11	1.979
T _e [keV]	0.39	0.401	s _k =rdln(κ)/dr	0.15	0.19
a/L _{ne}	1.005	4.06	DELTA = δ	0.25	0.168
a/L _{Te}	3.36	4.51	s _δ =rd(δ)/dr	0.32	0.32
β_e^{unit}	0.0027	0.003	Μ	0.2965	0.407
a/L _{nD}	1.497	4.08	γ_{E}	0.126	0.1646
a/L _{Ti}	2.96	3.09	γ _p	1.036	1.1558
T _i /T _e	1.13	1.39	ρ.	0.003	0.0035
n _D /n _e	0.785030	0.80371	λ _D /a	0.000037	0.0000426
n _c /n _e	0.035828	0.032715	c _s /a (10 ⁵ s-1)	4.4	2.35
a/L _{nC}	-0.87	4.08	Qe (gB)	3.82	0.0436
a/L _{TC}	2.96	3.09	Qi (gB)	0.018	0.0003
Z _{eff}	1.95	1.84			
nu _{ei} (a/c _s)	1.38	1.03			
q	3.79	3.07			
S	1.8	2.346			

Mapping $(k_r \rho_s, k_\theta \rho_s)_{GYRO} \rightarrow (k_R, k_7)^{exp}$

Preamble 3 Wavenumber mapping under simplifying assumptions

$$k_{R} = (k_{r}\rho_{s})_{GYRO} \left|\nabla r\right| / (\rho_{s})_{GYRO}$$

$$k_{Z} = (k_{\theta} \rho_{s})_{GYRO}^{loc} / (\kappa . \rho_{s})_{GYRO}$$

- Assumptions
 - $-\zeta=0$, d ζ /dr=0 (squareness + radial derivative)
 - $Z_0 = 0$, $dZ_0/dr = 0$ (elevation + radial derivative)
 - UD symmetric (up-down asymmetry of flux surface)
- In the following slides, develop mapping when assumptions are not satisfied, invert
 (D(r 0) Z(r 0))=(D Z) (r 0)

 $(\mathsf{R}(\mathsf{r},\theta),\mathsf{Z}(\mathsf{r},\theta))=(\mathsf{R}_{\exp},\mathsf{Z}_{\exp}) \rightarrow (\mathsf{r}_{\exp},\theta_{\exp})$.

Title here

Column 1

Column 2

Intro

- First level
 - Second level
 - Third level
 - You really shouldn't use this level the font is probably too small

Here are the official NSTX-U icons / logos

NSTX Upgrade NSTX Upgrade NSTX-U NSTX-U National Spherical Torus eXperiment Upgrade National Spherical Torus experiment Upgrade

Instructions for editing bottom text banner

Go to View, Slide Master, then select top-most slide - Edit the text box (meeting, title, author, date) at the bottom of the page Then close Master View plate new v1.pptx - Microsoft PowerPoint Colors -Delete Aa Title Rename A Fonts -Page Slide Close Setup Orientation + Master View [hemes Effects -Click to edit Master title style ck to edit Master text style hid level Click to edit Master title style GENERGY ST MNSTX-U Click to edit Master text styles - Second level Third level Click to edit Master title style Fourth level Second level - Tractional - Fourth level - Fourth level » Fifth level Click to edit Master title sty - Final Lovel - Second Invel - Neuronal -state Click to edit Master title style Second Invel - Notice of - Dearth Anal **NSTX-U** Meeting name, presentation title, author name, date

NSTX-U

PSFC Pizza Seminar, Fall 2017