

Enhanced Pedestal (EP) H-mode on NSTX

D.J. Battaglia R.E. Bell, S.P. Gerhardt, W. Guttenfelder, S.M. Kaye, R. Maingi, and the NSTX team

NSTX-U Science Meeting June 14, 2018

Place your institutional logo(s) here:

Enhanced Pedestal (EP) H-mode: improved τ_{E} without a arge change in particle confinement ϵ **i 138219 141340 1.5 D**α **[Arb.] 3.0 6.0 0.0 0.2 134991 141133 IP, Pinj/10 [MA, MW] 1.5 3.0 4.5** \mathbf{m} **D**
(

- EP H-mode usually triggered by **1.0** type-I ELM **0.6 0.8 250** \mathbf{A} **IP, Pinj/10 [MA, MW] 0.0 51 M**
	- EP H-mode phase is ELM-free and **0.0 0.2** MHD-free **1000 125 free 150200 WTOT [kJ]**
- Density increase slower than ELM-**0.0** free H-mode **1.5 D**α **[Arb.] -**mod **4** t<u>y</u>
|-
- Two examples shown **0 50 100 WTOT [kJ] 0 b**
7
	- NSTX Record H_{98(y,2)}: 134991 **8 (d) density [1013 cm-3] -20 -10**
	- Longest EP H-mode: 141133 **4 0.0 0.1 0.2 0.3 0.4 0.5** \mathbf{r} **i**me

R. Maingi et al., PRL 105, 135004 (2010) **Figure 2.** R. Maingi et al., J. Nucl. Mat. 390-1, 440-3 (2009) **S. Gerhardt et al., NF 54, 083021 (2014)** averaged density and (*e*) the odd-n MHD trace, indicative of *n* = 1

odd-n MHD

Enhanced Pedestal (EP) H-mode: improved τ_F without a large change in particle confinement i
C

- EP H-mode usually triggered by type-I ELM
	- EP H-mode phase is ELM-free and MHD-free
- Density increase slower than ELMfree H-mode
- Longest EP H-mode discharge compared to ELM-free discharges

NSTX-U Science Meeting, EP H-mode on NSTX, D.J. Battaglia, 6/14/18 3

Significant improvement in temperature profiles with subtle differences in E_r , density and flow

- Improved thermal barrier without a large change to the particle barrier
	- No q-shear reversal
- $\delta W_i/\delta W \sim 75\%$ for EP H-modes
	- $-$ T_i > T_e over most of the profile

NSTX-U Science Meeting, EP H-mode on NSTX, D.J. Battaglia, 6/14/18

1410 $\frac{1}{2}$ **CMW** $\frac{1}{2}$ **EFC** $\frac{1}{2}$ $\frac{1}{2}$ **CMW** 0.84 EFC + 400A 14113 3.0MW 0.84 EFC + 500 A 141143 3.0MW 0.84 EFC + 500 A 141143 3.0MW 0.84 EFC + 500 A 141144 3.0MW 0.84 EFC + 500 A 141144 3.0MW 0.84 EFC **14.000 10.000 S.000 EFFECT** This talk aims to demonstrate … **1410** 111

Increased ∇T_i due to reduced neoclassical thermal transport with lower collisionality

NSTX-U Science Meeting, EP H-mode on NSTX, D.J. Battaglia, 6/14/18 5

1410 $\frac{1}{2}$ **CMW** $\frac{1}{2}$ **EFC** $\frac{1}{2}$ $\frac{1}{2}$ **CMW** 0.84 EFC + 400A 14113 3.0MW 0.84 EFC + 500 A 141143 3.0MW 0.84 EFC + 500 A 141143 3.0MW 0.84 EFC + 500 A 141144 3.0MW 0.84 EFC + 500 A 141144 3.0MW 0.84 EFC **14.000 10.000 S.000 EFFECT** This talk aims to demonstrate …

develop with larger electron heating (via ion-e coupling) and changes to turbulent transport

ONSTX-U

NSTX-U Science Meeting, EP H-mode on NSTX, D.J. Battaglia, 6/14/18 6

1410 $\frac{1}{2}$ **CMW** $\frac{1}{2}$ **EFC** $\frac{1}{2}$ $\frac{1}{2}$ **CMW** 0.84 EFC + 400A 14113 3.0MW 0.84 EFC + 500 A 141143 3.0MW 0.84 EFC + 500 A 141143 3.0MW 0.84 EFC + 500 A 141144 3.0MW 0.84 EFC + 500 A 141144 3.0MW 0.84 EFC **14.000 10.000 S.000 EFFECT** This talk aims to demonstrate …

ONSTX-U

NSTX-U Science Meeting, EP H-mode on NSTX, D.J. Battaglia, 6/14/18 7

Outline of talk

- Characteristics of EP H-mode
- Neoclassical main ion transport at low collisionality
- Positive feedback mechanisms that reinforce improved ion thermal confinement

- Max - ∇T_i can occur anywhere within wide pedestal on NSTX
	- $-$ Location of max $-\nabla T_i$ is outboard of other max gradients (v $_{\phi}$, E_r, T_e ...)
	- $-$ Tends to align near minimum of E_r and v_{ϕ} well
- Transition most often triggered by an ELM
	- Increased -∇T_i develops over transport timescales (order 10 - 100 ms)
	- Carbon rotation gradient grows concurrently
- Observed over a wide range of shapes, I_p , B_T , q_{95} , β_p , P_{NB} , applied n=3 field
	- More common at low- q_{95} , but best performance at higher q_{95}
	- Reduced neutral fueling and large wall pumping is a common characteristic

R. Maingi et al., J. Nucl. Mat. 390-1, 440-3 (2009) R. Maingi et al., PRL 105, 135004 (2010) S. Gerhardt et al., NF 54, 083021 (2014)

- Max - ∇T_i can occur anywhere within wide pedestal on NSTX
	- $-$ Location of max $-\nabla T_i$ is outboard of other max gradients (v $_{\phi}$, E_r, T_e ...)
	- $-$ Tends to align near minimum of E_r well
- Transition most often triggered by an ELM
	- Increased -∇T_i develops over transport timescales (order 10 - 100 ms)
	- Carbon rotation gradient grows concurrently
- Observed over a wide range of shapes, I_p , B_T , q_{95} , β_p , P_{NB} , applied n=3 field
	- More common at low- q_{95} , but best performance at higher q_{95}
	- Reduced neutral fueling and large wall pumping is a common characteristic

NSTX-U Science Meeting, EP H-mode on NSTX, D.J. Battaglia, 6/14/18 11

- Max - ∇T_i can occur anywhere within wide pedestal on NSTX
	- $-$ Location of max $-\nabla T_i$ is outboard of other max gradients (v $_{\phi}$, E_r, T_e ...)
	- $-$ Tends to align near minimum of E_r well
- Transition most often triggered by an ELM
	- Increased -∇T_i develops over transport timescales (order 10 - 100 ms)
	- Carbon rotation gradient grows concurrently
- Observed over a wide range of shapes, I_p , B_T , q_{95} , $β_p$, P_{NB} , applied n=3 field
	- More common at low- q_{95} , but best performance at higher q_{95}
	- Reduced neutral fueling and large wall pumping is a common characteristic

R. Maingi et al., J. Nucl. Mat. 390-1, 440-3 (2009) R. Maingi et al., PRL 105, 135004 (2010) S. Gerhardt et al., NF 54, 083021 (2014)

Large T_i gradient exceeds neoclassical predictions

- Examine transport for discharge with large $\nabla\mathsf{T}_\mathsf{i}$ well inside separatrix
	- Minimize edge ion-orbit loss effects
- TRANSP: conductive ion flux is negative outside of gradient
	- Large $T_i T_e$ leads to significant thermal transfer to electrons in core

NSTX-U Science Meeting, EP H-mode on NSTX, D.J. Battaglia, 6/14/18 13

Large T_i gradient exceeds neoclassical predictions

- Examine transport for discharge with large $\nabla\mathsf{T}_\mathsf{i}$ well inside separatrix
	- Minimize edge ion-orbit loss effects
- TRANSP: conductive ion flux is negative outside of gradient
	- Large $T_i T_e$ leads to significant thermal transfer to electrons in core

Large T_i gradient exceeds neoclassical predictions

- Increase Z_{eff} in core by modifying n_{C} profile
	- Increases q_{i,cond} and improves agreement with neo calculations["]
- Work is ongoing to make quantitative agreement with neoclassical calculations
	- Sensitivity to equilibrium, profiles $(T_c=T_D?)...$
	- TRANSP, XGC0, GTC-NEO, NEO …
	- $-$ Take away: $\chi_i \sim \chi_{i,\text{neo}}$

Neoclassical transport at low collisionality

Sensitivity of ∇T_i to edge density consistent with neoclassical transport **0.05** it
.

Approximate banana regime main ion heat flux (Tokamaks, Wesson)

$$
q_{i} = -0.68 \frac{\varepsilon^{-3/2} q^{2} \rho_{i}^{2}}{\tau_{i}} \left(1 + 0.48 \varepsilon^{1/2}\right) n \frac{dT_{i}}{dr}
$$

$$
q_{i} \sim \frac{-\sqrt{T_{i}}}{Z_{eff} n_{e} n_{i}} \frac{dT_{i}}{dr}
$$

Heat flux from neoclassical approximation similar for three discharges despite larger dT ${}_{\mathsf{i}}$ /dR in EP H-mode due to differences in density and T_i profiles

Maximum achievable - ∇T_i improves with lower density

- Database of all NSTX CHERS profiles with $P_{NRI} > 2$ MW
	- $-$ Identify largest - ∇T_i within a few cm of maximum $-\nabla v_{\phi}$
		- Most success identifying gradients ψ_{N} < 1
- Maximum - ∇T_i increases as local density decreases
	- Each color represents factor 2 increase in number of database entries
		- \blacksquare Black = 1, Red > 128
	- Strong scaling with $n_c < 0.2 \times 10^{19}$ m⁻³
	- 10% of database entries satisfy typical EP Hmode designation
		- \blacksquare dT_i/dR > 0.12 keV/cm

Max -VT_i increases at decreasing density and increasing I_p , consistent with neo model

NSTX-U Science Meeting, EP H-mode on NSTX, D.J. Battaglia, 6/14/18 19 19 19 19 19 19 19 19 19 19 19 19 19

Main point: Increased ∇T_i in EP H-mode is consistent with reduction of χ_{i,neo} with lower ν_i*

- Supported using analytic neoclassical expression and …
	- Comparison of matched H- and EP H-mode shots
	- Database of NSTX discharges
- Current work focuses on …
	- Completing more rigorous neoclassical calculations
		- GTC-NEO, NEO, XGC0...
	- Time-dependent transport modeling including sources and sinks
		- TRANSP, XGC0 …
		- Next slides describe simple 1D model to provide insight into transport

Simple 1D model used to examine impact of edge density on neo ion thermal transport

- Fixed geometry parameters and q-profile
- Density profiles (n_e , n_c) are modified tanh profiles
- Start with a guess for q_i
- $T_{i,sep}$ proportional to q_{isep}
- T_i profile determined from Wesson q_{i,neo} – Start at $T_{i,\text{sep}}$ and calculate inward to core
- Fixed T_e scale length from separatrix until $T_e = T_i$
	- Fixed T_e separatrix
	- $-$ Fixed χ_e where T_e = T_i (χ_e ~ 3 m²/s)
- Compute heat flux
	- Fixed volumetric heating inside top of pedestal
		- § No neutral sources/sinks included
	- $-$ q_i reduced by e \rightarrow i coupling where (T_i > T_e)

Model illustrates large impact edge density has on T_i profile with neo transport **0.0 0.2 0.4 0.6 Ti (keV) 0 5** $d\epsilon$

ONSTX-U

NSTX-U Science Meeting, EP H-mode on NSTX, D.J. Battaglia, 6/14/18 22 1.2

Position of max - ∇T_i in model sensitive to the T_e profile **0.00.2 p**

1

Two EP H-mode discharges 141133 (left): max - ∇T_i is near separatrix 141340 (right): max - ∇T_i is 4 cm inside separatrix

Top of T_e pedestal shifted inward compared to 141133

e \rightarrow i coupling reduces q_{i} , and thus, dT $_{\mathsf{i}}$ /dR near separatrix

Provides explanation for why position of large ${\sf T}_{\sf i}$ gradient can vary between examples

1

Differences in ion species v_{dia} may describe concurrent increase in $\widetilde{\nabla v}_\phi$ with ∇T **0.0 0.2**

- C^{6+} and D⁺ density pedestals are not aligned
	- Difference in v_{dia} increases with ∇T_i
- Concurrent increase in ∇v_{ϕ} and ∇E_r with $\nabla\mathsf{T}_\mathsf{i}$ is often observed during ELM recovery
	- Simple model reproduces this when using many assumptions
		- $V_{pol} = 0$ everywhere for all species
		- $V_D = V_{dia} + V_{ExB}$ does not change with density, T_i
		- \blacksquare T_o = T_c
- Change $\nabla\mathsf{T}_\mathsf{j}$ drives change in $\nabla\mathsf{v}_\mathsf{\phi}$

Edge gradients increase and location of maximum gradient shifts inward

Positive feedback mechanisms

• What roll does an ELM play in triggering EP H-mode?

• Why doesn't every large ELM trigger EP H-mode?

ELMs can produce transient periods of elevated edge ion temperature

ELMs can produce transient periods of elevated edge ion temperature

ELM can provide transient period of low-collisionality

- Transient period of low-vi* during ELM recovery can be driven by T_i overshoot, density loss or combination of both
	- Plots show example of ELM rapidly changing the edge density

Impurity pinch is a possible feedback mechanism for the EP H-mode bifurcation

- Positive feedback ...
	- ELM transiently lowers edge collisionality
		- Slows impurity density pinch
		- lncreases - ∇T_i from neoclassical transport
	- $-$ Lower density, higher T_i reinforces low edge collisionality

Neoclassical carbon pinch

$$
\Gamma^{PS}_{C} = \frac{q^2 n_D \rho_D v_{DC}}{Z_C} \times \left[K \left(\frac{\partial \ln(n_D)}{\partial r} - \frac{Z_D}{Z_C} \frac{\partial \ln(n_C)}{\partial r} \right) + H \frac{\partial \ln(T_D)}{\partial r} \right]
$$

Polision frequency
Pinch
Screening

Simple 1D model extended to a pseudo time-dependent model for the ELM recovery **1.0 R (m)** $\overline{\mathbf{M}}$

3.0 0.2 Profiles in ELM recovery reduce the carbon pinch

2.0

$n_{\rm e}$ <u>Find T_i for prescribed density profiles</u> **0.1** Find T_i for prescribed density profile
Perturb n_D (wider tanh) to simulate a
Slowly restore n_D to original profile **Perturb n_n (wider tanh) to simulate an ELM**

1. It is a training the model of the same of the same of the $\frac{1}{2}$ **R (m)** At each step, adjust $n_{\rm C}$ consistent with difference between neoclassical flux for present profiles and the original profile

A second possible feedback mechanism: Increased -∇T_i can improve electron thermal confinement is comparable or exceeds that predicted by neoclassical predictions; this is visible in either the raw profiles, or the higher values of 1*/LT*ⁱ in frame (*b*). Discharge 133841 in Once again, the *T*ⁱ gradient appears steeper than predicted by the simple neoclassical model.

- Predominantly TEM driven by ∇T_e in pedestal $(a/L_{\text{Te}} > a/L_{\text{ne}} > a/L_{\text{Ti}})$ – Weak low- k_{θ} microtearing at some radii
- Growth rates larger than $E \times B$ shearing rates (γ_F) for $\psi_{\rm N}$ > 0.9
- Modes stabilized by increasing $\nabla T_i/T_i$
	- Similar to previous EP H-mode calculation using GS2 and H-mode calculations using GEM [Smith NF, 2013]
- Stabilization of TEM drives improvements in T_{α} pedestal
	- $\, {\mathsf T}_{\rm e}$ pedestal impacts ${\mathsf T}_{\rm i}$ through e $\boldsymbol{\rightarrow}$ i coupling

*J. Candy, E.A. Belli, JCP (2016)

BES spectrum shifts to higher frequency in the region with the largest T_i gradient

- BES cross power is suppressed below 30 kHz in EP H-mode
	- Largest change observed in region with large T_c gradient
	- Poloidal correlation length decreases in EP Hmode, consistent with shift to higher frequency
- Qualitatively consistent with predicted $\Delta\omega_{\sf r}$ due to higher $\nabla {\sf T}_{\sf i}$ (opposite to change in $V_{doppler}$)
	- May provide opportunity to compare calculations to direct turbulence measurements

Summary: Recent analysis advances the understanding of EP H-mode on NSTX

- Neoclassical transport: small changes in density can result in large changes in ∇T_i at low density
	- $-$ Core T_i sensitive to edge ∇T_i
- A transient period during an ELM recovery can trigger a positive feedback mechanism at low edge density
	- Reduction in impurity pinch with lower collisionality, larger $\nabla {\sf T}_{\sf i}/{\sf T}_{\sf i}$
	- Reduction in electron transport with larger $\nabla T_i/T_i$

Ongoing and future work

- What neoclassical physics must be included to quantitatively describe observed $\nabla T_{\sf i}$?
	- Investigating with different codes, datasets and assumptions
- Develop a time-dependent model that demonstrates positive feedback during ELM recovery
	- TRANSP and XGC0 are proposed tools
	- Are there requirements on the nature of the ELMs and/or the ELM recovery?
- Why NSTX? How does EP H-mode scale to other regimes?
	- NSTX had edge density control and ELM-free H-modes (unique for STs)
	- ST has wide pedestal that is ITG stable (neo thermal transport valid well inside separatrix)
	- DIII-D, JET observed VH-mode which is very similar to EP H-mode
	- Simple 1D model for NSTX-U: T_i gradients don't really scale larger if electron transport is unchanged

Ion collisionality may be the critical parameter **e**

• Selective analysis of H-mode and EP H-mode discharges suggests a critical ion collisionality **0.005 0.010 - dT**

NSTX-U Science Meeting, EP H-mode on NSTX, D.J. Battaglia, 6/14/18 36

Ion collisionality may be the critical parameter **e**

0.010

• Selective analysis of H-mode and EP H-mode discharges suggests a critical ion collisionality **0.000 0.005 - dT**

NSTX-U Science Meeting, EP H-mode on NSTX, D.J. Battaglia, 6/14/18 37