

Enhanced Pedestal (EP) H-mode on NSTX

D.J. Battaglia R.E. Bell, S.P. Gerhardt, W. Guttenfelder, S.M. Kaye, R. Maingi, and the NSTX team

NSTX-U Science Meeting June 14, 2018

Place your institutional logo(s) here:

Enhanced Pedestal (EP) H-mode: improved τ_E without a large change in particle confinement

- EP H-mode usually triggered by type-I ELM
 - EP H-mode phase is ELM-free and MHD-free
- Density increase slower than ELMfree H-mode
- Two examples shown
 NSTX Record H_{98(y,2)}: 134991
 Longest EP H-mode: 141133

R. Maingi et al., J. Nucl. Mat. 390-1, 440-3 (2009) R. Maingi et al., PRL 105, 135004 (2010) S. Gerhardt et al., NF 54, 083021 (2014)

Enhanced Pedestal (EP) H-mode: improved τ_E without a large change in particle confinement

- EP H-mode usually triggered by type-I ELM
 - EP H-mode phase is ELM-free and MHD-free
- Density increase slower than ELMfree H-mode
- Longest EP H-mode discharge compared to ELM-free discharges

H-mode.	EFC EFC + 400A	141131 141125
EP H-mode	EFC + 500A	141133

NSTX-U Science Meeting, EP H-mode on NSTX, D.J. Battaglia, 6/14/18

Significant improvement in temperature profiles with subtle differences in E_r, density and flow

- Improved thermal barrier without a large change to the particle barrier
 - No q-shear reversal
- $\delta W_i / \delta W \sim 75\%$ for EP H-modes
 - $T_i > T_e$ over most of the profile

Type	n=3 fields	<u>Shot</u>	
H-mode	EFC	141131	
H-mode	EFC + 400A	141125	
EP H-mode	EFC + 500A	141133	

This talk aims to demonstrate ...

Increased ∇T_i due to reduced neoclassical thermal transport with lower collisionality

Type

H-mode

H-mode

EP H-mode

NSTX-U Science Meeting, EP H-mode on NSTX, D.J. Battaglia, 6/14/18

This talk aims to demonstrate ...

Wider T_e pedestal can develop with larger electron heating (via ion-e coupling) and changes to turbulent transport

Type	n=3 fields	Shot
H-mode	EFC	141131
H-mode	EFC + 400A	141125
EP H-mode	EFC + 500A	141133

This talk aims to demonstrate ...

NSTX-U

NSTX-U Science Meeting, EP H-mode on NSTX, D.J. Battaglia, 6/14/18

Outline of talk

- Characteristics of EP H-mode
- Neoclassical main ion transport at low collisionality
- Positive feedback mechanisms that reinforce improved ion thermal confinement

- Max -\nabla T_i can occur anywhere within wide pedestal on NSTX
 - Location of max $-\nabla T_i$ is outboard of other max gradients (v_{ϕ} , E_r , T_e ...)
 - Tends to align near minimum of E_r and v_{ϕ} well
- Transition most often triggered by an ELM
 - Increased -∇T develops over transport timescales (order 10 - 100 ms)
 - Carbon rotation gradient grows concurrently
- Observed over a wide range of shapes, $I_p, B_T, \, q_{95}, \, \beta_{p,} \, P_{NBI}, \, applied \, n{=}3 \ field$
 - More common at low- q_{95} , but best performance at higher q_{95}
 - Reduced neutral fueling and large wall pumping is a common characteristic

R. Maingi et al., J. Nucl. Mat. 390-1, 440-3 (2009) R. Maingi et al., PRL 105, 135004 (2010) S. Gerhardt et al., NF 54, 083021 (2014)

- Max - ∇T_i can occur anywhere within wide pedestal on NSTX
 - Location of max $-\nabla T_i$ is outboard of other max gradients (v_{ϕ} , E_r , T_e ...)
 - Tends to align near minimum of E_r well
- Transition most often triggered by an ELM
 - Increased -\nabla T_i develops over transport timescales (order 10 - 100 ms)
 - Carbon rotation gradient grows concurrently
- Observed over a wide range of shapes, $I_{p},$ $B_{T},$ $q_{95},$ $\beta_{p,}$ $P_{NBI},$ applied n=3 field
 - More common at low- q_{95} , but best performance at higher q_{95}
 - Reduced neutral fueling and large wall pumping is a common characteristic

NSTX-U Science Meeting, EP H-mode on NSTX, D.J. Battaglia, 6/14/18

- Max -\nabla T_i can occur anywhere within wide pedestal on NSTX
 - Location of max - ∇T_i is outboard of other max gradients (v_{ϕ}, E_r, T_e...)
 - Tends to align near minimum of E_r well
- Transition most often triggered by an ELM
 - Increased -\nabla T_i develops over transport timescales (order 10 - 100 ms)
 - Carbon rotation gradient grows concurrently
- Observed over a wide range of shapes, $I_{p},$ $B_{T},$ $q_{95},$ $\beta_{p,}$ $P_{NBI},$ applied n=3 field
 - More common at low- $q_{95},$ but best performance at higher q_{95}
 - Reduced neutral fueling and large wall pumping is a common characteristic

R. Maingi et al., J. Nucl. Mat. 390-1, 440-3 (2009) R. Maingi et al., PRL 105, 135004 (2010) S. Gerhardt et al., NF 54, 083021 (2014)

Large T_i gradient exceeds neoclassical predictions

- Examine transport for discharge with large ∇T_i well inside separatrix
 - Minimize edge ion-orbit loss effects
- TRANSP: conductive ion flux is negative outside of gradient
 - Large $T_{\rm i}$ $T_{\rm e}$ leads to significant thermal transfer to electrons in core

Large T_i gradient exceeds neoclassical predictions

- Examine transport for discharge with large ∇T_i well inside separatrix
 - Minimize edge ion-orbit loss effects
- TRANSP: conductive ion flux is negative outside of gradient
 - Large $T_i T_e$ leads to significant thermal transfer to electrons in core

Large T_i gradient exceeds neoclassical predictions

- Increase Z_{eff} in core by modifying n_C profile
 - Increases q_{i,cond} and improves agreement with neo calculations
- Work is ongoing to make quantitative agreement with neoclassical calculations
 - Sensitivity to equilibrium, profiles $(T_C = T_D?)$...
 - TRANSP, XGC0, GTC-NEO, NEO ...
 - Take away: $\chi_i \sim \chi_{i,neo}$

NSTX-U Science Meeting, EP H-mode on NSTX, D.J. Battaglia, 6/14/18

Neoclassical transport at low collisionality

Sensitivity of ∇T_i to edge density consistent with neoclassical transport

Approximate banana regime main ion heat flux (Tokamaks, Wesson)

$$q_i = -0.68 \frac{\varepsilon^{-3/2} q^2 \rho_i^2}{\tau_i} (1 + 0.48\varepsilon^{1/2}) n \frac{dT_i}{dr}$$
$$q_i \sim \frac{-\sqrt{T_i}}{Z_{eff} n_e n_i} \frac{dT_i}{dr}$$

Heat flux from neoclassical approximation similar for three discharges despite larger dT_i/dR in EP H-mode due to differences in density and T_i profiles

Maximum achievable $-\nabla T_i$ improves with lower density

- Database of all NSTX CHERS profiles with P_{NBI} > 2 MW
 - Identify largest - ∇T_i within a few cm of maximum - ∇v_{ϕ}
 - Most success identifying gradients $\psi_N < 1$
- Maximum - ∇T_i increases as local density decreases
 - Each color represents factor 2 increase in number of database entries
 - Black = 1, Red > 128
 - Strong scaling with $n_C < 0.2 \times 10^{19} \text{ m}^{-3}$
 - 10% of database entries satisfy typical EP Hmode designation
 - dT_i/dR > 0.12 keV/cm

Max $-\nabla T_i$ increases at decreasing density and increasing I_p , consistent with neo model

NSTX-U Science Meeting, EP H-mode on NSTX, D.J. Battaglia, 6/14/18

Main point: Increased ∇T_i in EP H-mode is consistent with reduction of $\chi_{i,neo}$ with lower v_i^*

- Supported using analytic neoclassical expression and ...
 - Comparison of matched H- and EP H-mode shots
 - Database of NSTX discharges
- Current work focuses on ...
 - Completing more rigorous neoclassical calculations
 - GTC-NEO, NEO, XGC0...
 - Time-dependent transport modeling including sources and sinks
 - TRANSP, XGC0 ...
 - Next slides describe simple 1D model to provide insight into transport

Simple 1D model used to examine impact of edge density on neo ion thermal transport

- Fixed geometry parameters and q-profile
- Density profiles (n_e, n_C) are modified tanh profiles
- Start with a guess for q_i
- $T_{i,sep}$ proportional to q_{isep}
- T_i profile determined from Wesson q_{i,neo}
 Start at T_{i,sep} and calculate inward to core
- Fixed T_e scale length from separatrix until $T_e = T_i$
 - Fixed \overline{T}_e separatrix
 - Fixed χ_e where T_e = T_i ($\chi_e \sim 3 \text{ m}^2/\text{s}$)
- Compute heat flux
 - Fixed volumetric heating inside top of pedestal
 - No neutral sources/sinks included
 - − q_i reduced by $e \rightarrow i$ coupling where $(T_i > T_e)$

Model illustrates large impact edge density has on T_i profile with neo transport

NSTX-U Science Meeting, EP H-mode on NSTX, D.J. Battaglia, 6/14/18

Position of max $-\nabla T_i$ in model sensitive to the T_e profile

Two EP H-mode discharges 141133 (left): max $-\nabla T_i$ is near separatrix 141340 (right): max $-\nabla T_i$ is 4 cm inside separatrix

Top of T_e pedestal shifted inward compared to 141133

 $e \rightarrow i$ coupling reduces q_i , and thus, dT_i/dR near separatrix

Provides explanation for why position of large T_i gradient can vary between examples

Differences in ion species v_{dia} may describe concurrent increase in ∇v_{ϕ} with ∇T_i

- C⁶⁺ and D⁺ density pedestals are not aligned
 - Difference in v_{dia} increases with ∇T_i
- Concurrent increase in ∇v_φ and ∇E_r with ∇T_i is often observed during ELM recovery
 - Simple model reproduces this when using many assumptions
 - V_{pol} = 0 everywhere for all species
 - $V_D = V_{dia} + V_{ExB}$ does not change with density, T_i
 - $T_D = T_C$
- Change ∇T_i drives change in ∇v_{ϕ}

Edge gradients increase and location of maximum gradient shifts inward

Positive feedback mechanisms

• What roll does an ELM play in triggering EP H-mode?

• Why doesn't every large ELM trigger EP H-mode?

ELMs can produce transient periods of elevated edge ion temperature

ELMs can produce transient periods of elevated edge ion temperature

ELM can provide transient period of low-collisionality

- Transient period of low-v_i* during ELM recovery can be driven by T_i overshoot, density loss or combination of both
 - Plots show example of ELM rapidly changing the edge density

Impurity pinch is a possible feedback mechanism for the EP H-mode bifurcation

- Positive feedback ...
 - ELM transiently lowers edge collisionality
 - Slows impurity density pinch
 - Increases $-\nabla T_i$ from neoclassical transport
 - Lower density, higher T_i reinforces low edge collisionality

Neoclassical carbon pinch

$$\Gamma_{C}^{PS} = \frac{q^2 n_D \rho_D v_{DC}}{Z_C} \times \left[K \left(\frac{\partial \ln(n_D)}{\partial r} - \frac{Z_D}{Z_C} \frac{\partial \ln(n_C)}{\partial r} \right) + H \frac{\partial \ln(T_D)}{\partial r} \right]$$

Collision frequency Pinch Screening

Simple 1D model extended to a pseudo time-dependent model for the ELM recovery

Profiles in ELM recovery reduce the carbon pinch

Find T_i for prescribed density profiles Perturb n_D (wider tanh) to simulate an ELM Slowly restore n_D to original profile

At each step, adjust n_c consistent with difference between neoclassical flux for present profiles and the original profile

A second possible feedback mechanism: Increased $-\nabla T_i$ can improve electron thermal confinement

- Predominantly TEM driven by ∇T_e in pedestal (a/L_{Te} > a/L_{ne} > a/L_{Ti})
 Weak low-k_θ microtearing at some radii
- Growth rates larger than E×B shearing rates ($\gamma_{\text{E}})$ for ψ_{N} > 0.9
- Modes stabilized by increasing $\nabla T_i/T_i$
 - Similar to previous EP H-mode calculation using GS2 and H-mode calculations using GEM [Smith NF, 2013]
- Stabilization of TEM drives improvements in T_{e} pedestal
 - − T_e pedestal impacts T_i through e→i coupling

*J. Candy, E.A. Belli, JCP (2016)

BES spectrum shifts to higher frequency in the region with the largest T_i gradient

- BES cross power is suppressed below 30 kHz in EP H-mode
 - Largest change observed in region with large $T_{\rm C}$ gradient
 - Poloidal correlation length decreases in EP Hmode, consistent with shift to higher frequency
- Qualitatively consistent with predicted Δω_r due to higher ∇T_i (opposite to change in V_{doppler})
 - May provide opportunity to compare calculations to direct turbulence measurements

Summary: Recent analysis advances the understanding of EP H-mode on NSTX

- Neoclassical transport: small changes in density can result in large changes in ∇T_i at low density
 - Core T_i sensitive to edge ∇T_i
- A transient period during an ELM recovery can trigger a positive feedback mechanism at low edge density
 - Reduction in impurity pinch with lower collisionality, larger $\nabla T_i/T_i$
 - Reduction in electron transport with larger $\nabla T_i/T_i$

Ongoing and future work

- What neoclassical physics must be included to quantitatively describe observed ∇T_i ?
 - Investigating with different codes, datasets and assumptions
- Develop a time-dependent model that demonstrates positive feedback during ELM recovery
 - TRANSP and XGC0 are proposed tools
 - Are there requirements on the nature of the ELMs and/or the ELM recovery?
- Why NSTX? How does EP H-mode scale to other regimes?
 - NSTX had edge density control and ELM-free H-modes (unique for STs)
 - ST has wide pedestal that is ITG stable (neo thermal transport valid well inside separatrix)
 - DIII-D, JET observed VH-mode which is very similar to EP H-mode
 - Simple 1D model for NSTX-U: T_i gradients don't really scale larger if electron transport is unchanged

Ion collisionality may be the critical parameter

 Selective analysis of H-mode and EP H-mode discharges suggests a critical ion collisionality

NSTX-U Science Meeting, EP H-mode on NSTX, D.J. Battaglia, 6/14/18

Ion collisionality may be the critical parameter

 Selective analysis of H-mode and EP H-mode discharges suggests a critical ion collisionality

NSTX-U Science Meeting, EP H-mode on NSTX, D.J. Battaglia, 6/14/18