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Abstract

The Startsev-Lee (S-L) EM scheme has been reformulated for general
geometry.

The scheme shows a lot of promise for the simulation of the micro-tearing
modes in ST tokamaks like NSTX.

We have also implemented the Mishichenko’'s (MS) general geometry EM
scheme into EM-GTS for cross-scheme-verification.

The EM-GTS is currently being used to study the electromagnetic modes
in the pedestal region of the DIIID.

The benchmarking of the code in the Cyclone and pedestal DIIID ge-
ometry against published results is ongoing to better understand the
resolution requirements of the implemented EM schemes.



S-L EM scheme description: Viasov Equations

e [ he linearized VIasov equation is

8,0f + Lof = —(5L) Fy
o Here [ = ’U||8|| + vy -V 4+ ’I'JH(?/((?’UH + C.p = 1)Ha|| + C.o + Edr .

e with 6f = wkFp, equation for the weight w becomes

BL)Fo _  [Eyy — (Var - V)]
Fo T

8tw—|—Ew - — —I—KVE[qb—‘UHAH] —|—O(p*)

e Where, O(p*) means all terms which are p* time smaller than the kept
terms. Here kK = —Vlogn — (v2/2T —3/2)VIogT.

e Defining the new weight w = f@—|—f<;-vE[f dt¢p], equation for the new weight
w becomes




S-L EM scheme description: Field Equations

e With the new weights the gyro-kinetic Poisson’s equations becomes

V2¢=<w>=<@>+<m-vE[/dt¢] >

e Using B = —8tA|| — 8||¢, the time derivative of the Ampere’s equation
VQAH =f6< vw >= B < ’U”f[l} >

e becomes:
VQ(—EH — 8H¢) =pB< UHaﬂD >= —f3 < UHE@ > 48 < U||RHS >= < UH(RHS —w) >

e In the single weight formulation

< ’UH’U_) >=< ’UHE’J) >=V: < ’U||V’LTJ >+ < (V(U)’UH — ’UH)’LD >

e The double weight formulation avoids calculation of the divergence of
the highly fluctuating quantity < v jvw >.

e [ he source term for the VIasov equation for w can be calculated analyt-
ically or numerically as
RHS(z + zdt,t) — RHS(z — zdt,t)

L(RHS) = T




Alternative Approach

Alternatively, define the new weight wy; as w = wy; — ot fth”/T, which
satisfies the equation

dawrs 4 Lwy = V) J dtBy + (9 — VT(U)’UH) JdtE + (var - V)]

b e fan] s

With this weight the gyro-kinetic Poisson’s equation becomes

V2 =<wy >+ <k-vg [/dtq§] >

Using fthH = —A -9 [ dtp, the Ampere’s equation VQA” =B <y >
becomes:

(VQ - B < ’Uﬁ >) /thH = —V? <6| /dtqb) - B < vwm >

This approach is similar to the Mishichenko's EM scheme.



Alfven waves and Drift-tearing modes
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e f.-scan of alfven mode frequency is shown for (m,n)=(2,2)
mode in cylindrical geometry with flat q(r)=2.

e Simulations of global drift-tearing (m,n)=(2,1) mode is
shown in cylindrical geometry and for electron beta
o =0.2%andR/Ly, = 3and q(r) = 1.7/(1 — 1% /2a?)
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Micro-tearing mode

Simulation of the semi—collisional micro-tearing mode in the annulus of the circular flux-
surfaces tokamak with aspect ratio R/a=4 and for electron beta 8, = 4% and,

a/o; =50,v,; =08 c;/a,R/Ly, =R/Lyi =7,R/L, =0.5.

Electrostatic potential ¢ is plotted in the poloidal plane. Classic MTM structure is apparent. The
mode rotates in the electron diamagnetic direction (clock-wise).
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ITG to KBM transition simulation

* f3.-scan of the Cyclone case, a/o; =50,n =6, R/L;y, = R/Ly; = 6.92,R/L,, =2.22.
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ITG to KBM cross-benchmarking (MS vs. S-L)
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DIlI-D pedestal test simulation with EM-GTS

Simulation of DIII-D test case with EM GTS in pedestal region 0.9<{)<1. Parameters are the same as in
2015 Holod&Lin paper f, = 0.37% and R/L,=25, R/L,,=2, R /L:;=30, q(=0.95)=3.5. The mode

number n=20.

The mode is ballooning and rotating in ion diamagnetic direction. The frequency and the growth rate

are very close to Holod's result.

Plotted are time history and 2-d poloidal plot of electrostatic potential, also showing frequency and

growth rate in the units of cg/Ly;.
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Development of electromagnetic capabilities in GTS

relevant for NSTX

Preliminary simulation of global KBM (Fig.a) and MTM (Fig.b) for NSTX equilibria which is

the demonstration that the EM GTS code can operate in NSTX geometry and can produce modes
with tearing and ballooning parities.
Electrostatic potential ¢ is plotted in poloidal plane of NSTX for electron beta increasing from

e = 0.5%. (a), to B, = 1.6%. (b), to B, = 3.2%. (c). As beta increases the unstable low-n micro-
tearing mode (MTM) (a) which has its maximum on high-field side switches to high-n MTM (b) on
low-field side. As beta is increased further, the kinetic ballooning mode (KBM) is destabilized in low

field side of NSTX (c).
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Illustration of Previous Approaches

In the simplest case with no gradients or collisions and neglecting the
ion’'s gyro-center motion.

Introducing particle weights 6 fo = weFp., We need to solve the Poisson’s
and Ampere’s law equations

V3p = /weFeo, and V7A= 5/%}«;0,

where VlIasov equation for electrons is

OWwe

ot

+ o9 we = v) (94 + 8 A).

To eliminate 0;A, introduce new we = we — v”A, so Equation for w. be-
comes

OWe

ot

+ v 9 we = v 0 (¢ — v A).
Field equations become

vﬁ_¢ — /@€F€O7 and (vi - /8m>A — B/JJeFeOa

Here m = mi/me = [ vf Feo.



Illustration of Previous Approaches, cont’'d

Solving linear Vlasov equations we obtain set of field equations

A—k
kP =n, = — . 1201 4 x),

— (k2 + Bm)A = Bj. = B | —mA — %(wA — k)1 + X) |,
[

Here X = X[w/(k”’l)the)] ~ 0 for w/k“ < Vthe-

To model the errors due to sources in these equations calculated using
particles we write

wA — k”qb
ky

—kfp=n.=—-C,

— (k2 4+ CnBm)A = Bj. = BC; | —mA — %(wA — k)|,
|

where Cp is introduced by hand to cancel the error in calculating the
sources. All C ~ 1.



Illustration of Cancelation Problem

The dispersion relation

2
> k_|(Cn+ki

_ A~ Bm
=1 (22 )[1+<CN cnis]

To get correct alfven wave dispersion we need

]{2
(CN - Cj) < B—;’L == ()\ekj_)z.

where A, = p;/v/Bm < p; is electron skin-depth.

For k; ~1/a and a/p; = 100, 8 = 0.01 and m = m;/m. = 1836
(Cy —C;) < 5-107°.

Therefore, extreme care is required to cancel large terms in Ampere’s
law to obtain correct low (m,n) shear-alfven wave when Bm;/me > 1.



A Better Way

Instead of two equations for ¢ and A with separately calculated sources

A—k
—kigb:ne:—w k” ||¢(1—|—X),

—(k? + Bm)A = Bje = B

—mA— k%l@A — k) (1 + X)] ,

Let’'s combine them into one equation for E = i(wA — k|¢)

w2
—mEH - ?EH(]' —|— X)] —|— (1 —|— X)E} >

— (k2 + Bm)E) = Source {B
I

Where Source{something} means calculated using particles.

The reason for using Ej and not A and ¢ is because for fm;/me >> 1

1 m; 1
ki ~wA ~ E,> FE,, and kjA) ~ E|>> E,
19~ wA~ e B> ok A) ~ B e ||




A Better Way, cont’'d

For X =~ 0, and introducing C factors to model source errors we obtain

—(k? + Cnpm)E = C;

Y

—BmE + (1 — 5;:—2) E

and dispersion relation

ki (Cy+ k2
w2:—( s+ kT

5 (7 )[1+(0N—03) frm ]

Cs+ k2]

To get correct alfven wave dispersion we need

2
(Cy — C,) < Cs _ (A—> .
Bm Pi

For arbitrary k; and a/p; = 100, 8 = 0.01 and m = m;/m. = 1836
(CN - Cs) << 0-05.

This is easily achieved by using reasonable number of particles per-cell
in addition to one-two iterations of field equations.

— (kT + Bm)E = BSource + 3 [Source {< ’UﬁE” >} — mE” :
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