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Abstract

• The Startsev-Lee (S-L) EM scheme has been reformulated for general
geometry.

• The scheme shows a lot of promise for the simulation of the micro-tearing
modes in ST tokamaks like NSTX.

• We have also implemented the Mishichenko’s (MS) general geometry EM
scheme into EM-GTS for cross-scheme-verification.

• The EM-GTS is currently being used to study the electromagnetic modes
in the pedestal region of the DIIID.

• The benchmarking of the code in the Cyclone and pedestal DIIID ge-
ometry against published results is ongoing to better understand the
resolution requirements of the implemented EM schemes.



S-L EM scheme description: Vlasov Equations

• The linearized Vlasov equation is

∂tδf + L̂δf = −(δL̂)F0

• Here L̂ = v‖∂‖ + vdr · ∇+ v̇‖∂/∂v‖ + Ccol ≡ v‖∂‖ + Ccol + L̂dr .

• with δf = wF0, equation for the weight w becomes

∂tw + L̂w = −
(δL̂)F0

F0
= −

[E‖v‖ − (vdr · ∇)φ]

T
+ κ · vE[φ− v‖A‖] +O(ρ∗)

• Where, O(ρ∗) means all terms which are ρ∗ time smaller than the kept
terms. Here κ = −∇ logn− (v2/2T − 3/2)∇ logT .

• Defining the new weight w = ŵ+κ·vE[
∫
dtφ], equation for the new weight

ŵ becomes

∂tŵ + L̂ŵ = −
[E‖v‖ − (vdr · ∇)φ]

T
+ κ · vE

[∫
dtE‖

]
− L̂drκ · vE

[∫
dtφ

]
≡ RHS

• Defining the second weight w̄ = L̂ŵ, we obtain the equation for w̄:

∂tw̄ + L̂w̄ = L̂(RHS)



S-L EM scheme description: Field Equations

• With the new weights the gyro-kinetic Poisson’s equations becomes

∇2φ =< w >=< ŵ > + < κ · vE
[∫

dtφ

]
>

• Using E‖ = −∂tA‖ − ∂‖φ, the time derivative of the Ampere’s equation

∇2A‖ = β < v‖w >= β < v‖ŵ >

• becomes:

∇2(−E‖ − ∂‖φ) = β < v‖∂tŵ >= −β < v‖L̂ŵ > +β < v‖RHS >= β < v‖(RHS − w̄) >

• In the single weight formulation

< v‖w̄ >≡< v‖L̂ŵ >= ∇· < v‖vŵ > + < (ν(v)v‖ − v̇‖)ŵ >

• The double weight formulation avoids calculation of the divergence of
the highly fluctuating quantity < v‖vŵ >.

• The source term for the Vlasov equation for w̄ can be calculated analyt-
ically or numerically as

L̂(RHS) =
RHS(z + żdt, t)−RHS(z− żdt, t)

2dt



Alternative Approach

• Alternatively, define the new weight wM as ŵ = wM − v‖
∫
dtE‖/T , which

satisfies the equation

∂twM + L̂wM =
[v‖(v · ∇)

∫
dtE‖ + (v̇‖ − ν(v)v‖)

∫
dtE‖ + (vdr · ∇)φ]

T

+ κ · vE
[∫

dtE‖

]
− L̂drκ · vE

[∫
dtφ

]
• With this weight the gyro-kinetic Poisson’s equation becomes

∇2φ =< wM > + < κ · vE
[∫

dtφ

]
>

• Using
∫
dtE‖ = −A‖ − ∂‖

∫
dtφ, the Ampere’s equation ∇2A‖ = β < v‖ŵ >

becomes:

(∇2 − β < v2
‖ >)

∫
dtE‖ = −∇2

(
∂‖

∫
dtφ

)
− β < v‖wM >

• This approach is similar to the Mishichenko’s EM scheme.



Alfven waves and Drift-tearing modes  

• 𝛽𝛽𝑒𝑒-scan of alfven mode frequency is shown for (m,n)=(2,2) 
mode in cylindrical geometry with flat q(r)=2. 

• Simulations of global drift-tearing (m,n)=(2,1) mode is 
shown in cylindrical geometry  and for electron beta 
𝛽𝛽𝑒𝑒 = 0.2% and𝑅𝑅 𝐿𝐿𝑇𝑇𝑇𝑇⁄ = 3 and q r = 1.7 1 − 𝑟𝑟2 2𝑎𝑎2⁄⁄  
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Micro-tearing mode 

• Simulation of the semi–collisional micro-tearing mode in the annulus of the circular  flux-
surfaces tokamak  with aspect ratio  R/a=4 and for electron beta 𝛽𝛽𝑒𝑒 = 4%  and, 
𝑎𝑎 𝜚𝜚𝑠𝑠 = 50 ,⁄  𝜈𝜈𝑒𝑒𝑒𝑒 = 0.8 𝑐𝑐𝑠𝑠 𝑎𝑎⁄ ,𝑅𝑅 𝐿𝐿𝑇𝑇𝑇𝑇 = 𝑅𝑅 𝐿𝐿𝑇𝑇𝑖𝑖 = 7,𝑅𝑅 𝐿𝐿𝑛𝑛 =⁄ 0.5.⁄⁄  

• Electrostatic potential  φ is plotted in the poloidal plane. Classic MTM structure is apparent. The 
mode rotates in the electron diamagnetic direction (clock-wise).   

 



ITG to KBM transition simulation 
• 𝛽𝛽𝑒𝑒-scan of the Cyclone case,  𝑎𝑎 𝜚𝜚𝑠𝑠 = 50 ,𝑛𝑛 = 6,⁄  𝑅𝑅 𝐿𝐿𝑇𝑇𝑇𝑇 = 𝑅𝑅 𝐿𝐿𝑇𝑇𝑇𝑇 = 6.92,𝑅𝑅 𝐿𝐿𝑛𝑛 =⁄ 2.22.⁄⁄  



ITG to KBM cross-benchmarking (MS vs. S-L)  

• Red squares are results of MS runs 
     with resolution ∆𝑟𝑟

𝜚𝜚𝑠𝑠
= 1.0, 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 50 , ∆𝑙𝑙𝜃𝜃

𝜚𝜚𝑠𝑠
= 0.5. 

• Blue triangles are results of MS runs 
     with resolution ∆𝑟𝑟

𝜚𝜚𝑠𝑠
= 0.25, 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 200 , ∆𝑙𝑙𝜃𝜃

𝜚𝜚𝑠𝑠
= 0.5. 

 

• (left) S-L radial 
resolution 
convergence 
runs. 

• (right) 
Comparison of 
MS vs. S-L.  

      



DIII-D pedestal test simulation with EM-GTS 
• Simulation of DIII-D test case with EM GTS in pedestal region  0.9<ψ<1. Parameters are the same as in  

2015 Holod&Lin paper 𝛽𝛽𝑒𝑒 = 0.37% and 𝑅𝑅/𝐿𝐿𝑡𝑡𝑡𝑡=25, 𝑅𝑅/𝐿𝐿𝑛𝑛=2, 𝑅𝑅/𝐿𝐿𝑡𝑡𝑡𝑡=30, q(ψ=0.95)=3.5.  The mode 
number n=20. 

• The mode is ballooning  and rotating in ion diamagnetic direction. The frequency and the growth rate 
are very close to Holod's result. 

• Plotted are time history and 2-d poloidal plot of electrostatic potential, also showing frequency and 
growth rate in the units of cs/Lti. 
 



Development of electromagnetic capabilities in GTS 
relevant for NSTX  

• Preliminary simulation of global KBM (Fig.a) and MTM (Fig.b)  for NSTX equilibria which is 
the  demonstration that the EM GTS code can operate in NSTX geometry and can produce modes 
with tearing and ballooning parities. 

• Electrostatic potential φ  is plotted in poloidal plane of NSTX for electron beta increasing  from 
𝛽𝛽𝑒𝑒 = 0.5%. (a), to 𝛽𝛽𝑒𝑒 = 1.6%. (b), to 𝛽𝛽𝑒𝑒 = 3.2%. (c).  As beta increases the unstable  low-n micro-
tearing mode (MTM) (a) which has its maximum on high-field side switches to  high-n MTM (b) on 
low-field side. As beta is increased further, the kinetic ballooning mode (KBM)  is destabilized in low 
field side of NSTX (c).  
 



Illustration of Previous Approaches

• In the simplest case with no gradients or collisions and neglecting the
ion’s gyro-center motion.

• Introducing particle weights δfe = weF0e, we need to solve the Poisson’s
and Ampere’s law equations

∇2
⊥φ =

∫
weFe0, and ∇2

⊥A = β

∫
weFe0,

• where Vlasov equation for electrons is

∂we

∂t
+ v‖∂‖we = v‖(∂‖φ+ ∂tA).

• To eliminate ∂tA, introduce new w̄e = we − v‖A, so Equation for w̄e be-
comes

∂w̄e

∂t
+ v‖∂‖w̄e = v‖∂‖(φ− v‖A).

• Field equations become

∇2
⊥φ =

∫
w̄eFe0, and (∇2

⊥ − βm)A = β

∫
w̄eFe0,

• Here m = mi/me =
∫
v2
‖Fe0.



Illustration of Previous Approaches, cont’d

• Solving linear Vlasov equations we obtain set of field equations

−k2
⊥φ = ne = −

ωA− k‖φ
k‖

(1 +X),

−(k2
⊥ + βm)A = βje = β

[
−mA−

ω

k2
‖

(ωA− k‖φ)(1 +X)

]
,

• Here X = X[ω/(k‖vthe)] ≈ 0 for ω/k‖ � vthe.

• To model the errors due to sources in these equations calculated using
particles we write

−k2
⊥φ = ne = −Cn

ωA− k‖φ
k‖

,

−(k2
⊥ + CNβm)A = βje = βCj

[
−mA−

ω

k2
‖

(ωA− k‖φ)

]
,

• where CN is introduced by hand to cancel the error in calculating the
sources. All C ≈ 1.



Illustration of Cancelation Problem

• The dispersion relation

ω2 =
k2
‖

β

(
Cn + k2

⊥
Cj

)[
1 + (CN − Cj)

βm

k2
⊥

]
.

• To get correct alfven wave dispersion we need

(CN − Cj)�
k2
⊥

βm
= (λek⊥)2.

• where λe = ρi/
√
βm� ρi is electron skin-depth.

• For k⊥ ∼ 1/a and a/ρi = 100, β = 0.01 and m = mi/me = 1836

(CN − Cj)� 5 · 10−6.

• Therefore, extreme care is required to cancel large terms in Ampere’s
law to obtain correct low (m,n) shear-alfven wave when βmi/me � 1.



A Better Way

• Instead of two equations for φ and A with separately calculated sources

−k2
⊥φ = ne = −

ωA− k‖φ
k‖

(1 +X),

−(k2
⊥ + βm)A = βje = β

[
−mA−

ω

k2
‖

(ωA− k‖φ)(1 +X)

]
,

• Let’s combine them into one equation for E‖ = i(ωA− k‖φ)

−(k2
⊥ + βm)E‖ = Source

{
β

[
−mE‖ −

ω2

k2
‖
E‖(1 +X)

]
+ (1 +X)E‖

}
,

• Where Source{something} means calculated using particles.

• The reason for using E‖ and not A and φ is because for βmi/me >> 1

k‖φ ∼ ωA ∼
1

(ρik⊥)2
E‖ > E‖, and v‖(k‖A) ∼

√
β
mi

me

1

(ρik⊥)2
E‖ >> E‖,



A Better Way, cont’d

• For X ≈ 0, and introducing C factors to model source errors we obtain

−(k2
⊥ + CNβm)E = Cs

[
−βmE +

(
1− β

ω2

k2
‖

)
E

]
,

• and dispersion relation

ω2 =
k2
‖

β

(
Cs + k2

⊥
Cs

)[
1 + (CN − Cs)

βm

Cs + k2
⊥

]
.

• To get correct alfven wave dispersion we need

(CN − Cs)�
Cs

βm
=

(
λe

ρi

)2

.

• For arbitrary k⊥ and a/ρi = 100, β = 0.01 and m = mi/me = 1836

(CN − Cs)� 0.05.

• This is easily achieved by using reasonable number of particles per-cell
in addition to one-two iterations of field equations.

−(k2
⊥ + βm)E‖ = βSource+ β

[
Source

{
< v2

‖E‖ >
}
−mE‖

]
,
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