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Plasma self-generated non-inductive current is of great importance

— NTM physics, ELM dynamics, overall plasma confinement

Bootstrap current J,,s — a well known non-inductive current

— driven by pressure and temperature gradients in toroidal geometry
— associated with existence of trapped particles

— predicted by neoclassical theory (see, e.g., Hinton & Hazeltine, ’76);

— discovered in experiments (Zarnstorff & Prager, '84)

Total current rather than local current density measured in exptls.
— ~ Jps =50 % in core
— significant deviations seem to appear in edge pedestal
(Coda et.al., TAEA-FEC’08; Kikuchi-Azumi, PPCF’95)

However, fusion plasmas are usually not turbulence-free
— how fluctuations affect self-driven current generation

— a largely unexplored, but important issue
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Additional bootstrap current associated with strong
toroidal rotation gradient — finite orbit neoclassical effect

e Nonlocal neoclassical equilibrium solution in collisionless regime:
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e Due to finite orbit neoclassical effect — higher order correction
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(Wang et. al., PoP’06)



turbulence + neoclassical dynamics

e Simulations use plasma conditions relevant to current experiments
— NSTX H-mode core plasma profiles

— Real DIII-D or NSTX geometry/equilibrium
— Vn-driven CTEM (DTEM) turbulence for DITI-D (NSTX)
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e Follows plasma evolution for much longer than electron collision time

e [Focus on mean electron current



Parallel current structure is largely changed from
neoclassical phase to turbulence phase

e Distinct phases are shown in electron current generation during simulation

Electron parallel current (only contributed by non-adiabatic electrons):
Je,| B = e/v||B5fed3v

t = 3.47’62' = 10.17’62' t = 307’67;
(neoclassical phase)  (turb. growing phase) (well-developed turb. phase)

-~ J”!II (a.u.) step 34 -~ J”eB (a.u.) step 100 ~ "HeB (a.u.) step 180
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e —turb, phase | e simulation shows three distinct phases
e 2
60/ <j<5§>> @u.) for current development
""" “bs

e current profile significantly modified

20 — total current can be changed too

parallel current density <je //B> (a.u)
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e fine radial scales presented in electron
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e Current is mainly carried by electrons around trapped-passing boundary

— mostly contributed by passing particles

— considerable contribution from trapped electrons
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Significant current can be generated in flat pressure
region — nonlocal effect due to turbulence spreading

parallel current density <je ”B> (a.u.)
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Current diffusion via turbulence spreading

Anomalous current fully driven by fluctuations

Not associated with local profile gradients
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Possible source for seed current near magnetic axis (7)
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May drive current inside magnetic island (?) — impact NTM dynamics



Generalized NC Ohm’s law (see Hinton et.al.,’04; Gatto-Chavdarovski,’11)
() = Jvs) B) = Oneol B B) + (jaynB)

Parallel acceleration driving a current against resistive decay
(Itoh & Itoh, Phys. Lett. A ’88; Hinton et. al., PoP’04)

I tury ~ Eyite® fmeve; ~ (kyoni)
Divergence of radial flux of parallel electron momentum (Hinton et.al., ’04)
j||,turb ~ V- Hr,||/meyei

Significant residual stress contribution ITR> ~ (kgkdp?
| 1%k

(Wang et.al., IAEA-FEC’12; McDevitt et. al., PoP’17)
— link to kj-symmetry breaking (Diamond et.al., NF'09)

Finite (k) is needed for both parallel acceleration and residual stress
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e Underlying process is turbulence-induced

electron-ion momentum exchange

e Drive a net current but not change total

momentum

e kj-symmetry breaking can be caused by fluctuation intensity gradient

® j|,+urp direction may link to sign of (k) and then turb. intensity gradient
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Turbulence-produced electron parallel Reynolds stress
drives fine-scale anomalous current near rational surface

parallel current density <je B> (a.u.)
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e Modify current density profile near a rational surface but not total current

e Radial scale of electron current corrugation ~ a few p,

® H;’S” closely correlates with both turbulence intensity gradient and ZF

shear through their effects on k-symmetry breaking
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e A critical v} exists?

parallel current density <je //B> (a.u.)

(like intrinsic rotation reversal) . .

e Reduction of electron current relative to Jps increases as v decreases

e Possible impact on fully non-inductive steady state operation in burning

plasma regime (7)
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— close to situations/assumptions that theory is conducted

— useful for developing and testing theory

— consistent with fully nonlinear simulation result
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Self-generated current is reduced as fluctuation level increases

Test particle simulations with given static fluctuations from NL GTS run

Turbulence induced current reduces bootstrap current in low-v, regime
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(Wang et. al., NF'15)

e Capable to survive strong E x B shear in NSTX
(CTEM strongly suppressed by collisions in STs)

e Drives experimentally relevant transport in NSTX

e DTEM driven-transport increases with v,

(possible source for ST H-mode confinement scaling)

e C/DTEM-free regime in low collisionality

(possibly relevant to NSTX-U & ST-FNSF)
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parallel current density <je B> (a.u.)
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e Increase total current in NSTX where collisionality is relatively high
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Nonlinear global gyrokinetic simulation with consistent turbulent and

neoclassical dynamics is used to study plasma current generation

Plasma self-generated current can be strongly modified by turbulence

— profile structure; — amplitude; — phase space structure

Current diffusion induced by turbulence spreading generates finite current

in flat pressure region

Mechanisms include i) electron parallel acceleration; ii) resid. stress drive

— kj-symmetry breaking plays an important role

— J|lturs direction may link to sign of (k)|), and then to turbulence
intensity and zonal flow profiles

Turbulence may enhance plasma self-generated current in high-v) regime,

but deduct it in low-v} regime

— reduction of electron current relative to Jps increases as v decreases

Self-generated current is reduced as fluctuation level increases

Experimental verification is critical: to examine characteristic trend predicted
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