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Can turbulence drive plasma current
or change bootstrap current? and how?

• Plasma self-generated non-inductive current is of great importance

– NTM physics, ELM dynamics, overall plasma confinement

• Bootstrap current Jbs – a well known non-inductive current

– driven by pressure and temperature gradients in toroidal geometry

– associated with existence of trapped particles

– predicted by neoclassical theory (see, e.g., Hinton & Hazeltine, ’76);

– discovered in experiments (Zarnstorff & Prager, ’84)

• Total current rather than local current density measured in exptls.

– ∼ Jbs ± 50 % in core

– significant deviations seem to appear in edge pedestal

(Coda et.al., IAEA-FEC’08; Kikuchi-Azumi, PPCF’95)

• However, fusion plasmas are usually not turbulence-free

– how fluctuations affect self-driven current generation

– a largely unexplored, but important issue
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Additional bootstrap current associated with strong
toroidal rotation gradient – finite orbit neoclassical effect

• Nonlocal neoclassical equilibrium solution in collisionless regime:
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• Due to finite orbit neoclassical effect – higher order correction
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This study employs a global gyrokinetic model coupling
self-consistent turbulence + neoclassical dynamics

• Simulations use plasma conditions relevant to current experiments

– NSTX H-mode core plasma profiles

– Real DIII-D or NSTX geometry/equilibrium

– ∇n-driven CTEM (DTEM) turbulence for DIII-D (NSTX)
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• Follows plasma evolution for much longer than electron collision time

• Focus on mean electron current
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Parallel current structure is largely changed from
neoclassical phase to turbulence phase

• Distinct phases are shown in electron current generation during simulation

Electron parallel current (only contributed by non-adiabatic electrons):

je,‖B ≡ e

∫
v‖Bδfed

3v

t = 3.4τei t = 10.1τei t = 30τei

(neoclassical phase) (turb. growing phase) (well-developed turb. phase)
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Plasma self-generated macroscopic current can be
significantly modified in the presence of turbulence
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• simulation shows three distinct phases
for current development

• current profile significantly modified
– total current can be changed too

• fine radial scales presented in electron
current
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Phase space structure of electron current density is
largely changed by turbulence
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• Current is mainly carried by electrons around trapped-passing boundary

– mostly contributed by passing particles

– considerable contribution from trapped electrons
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Significant current can be generated in flat pressure
region – nonlocal effect due to turbulence spreading
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• Current diffusion via turbulence spreading

• Anomalous current fully driven by fluctuations

• Not associated with local profile gradients

• Possible source for seed current near magnetic axis (?)

• May drive current inside magnetic island (?) → impact NTM dynamics
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Underlying physics may link to electron momentum
transport and flow generation

• Generalized NC Ohm’s law (see Hinton et.al.,’04; Gatto-Chavdarovski,’11)

〈(j‖ − jbs)B〉 = σneo〈Eind
‖ B〉 + 〈jdynB〉

• Parallel acceleration driving a current against resistive decay
(Itoh & Itoh, Phys. Lett. A ’88; Hinton et. al., PoP’04)

j‖,turb ∼ Ẽ‖ñ∗e2/meνei ∼ 〈k‖δn2
k〉

• Divergence of radial flux of parallel electron momentum (Hinton et.al., ’04)

j‖,turb ∼ ∇ · Πr,‖/meνei

• Significant residual stress contribution ΠRS
r,‖ ∼ 〈kθk‖δφ2

k〉
(Wang et.al., IAEA-FEC’12; McDevitt et. al., PoP’17)

– link to k‖-symmetry breaking (Diamond et.al., NF’09)

• Finite 〈k‖〉 is needed for both parallel acceleration and residual stress
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Turbulence-induced parallel acceleration seems to drive
anomalous current in a large scale

0.3 0.4 0.5 0.6 0.7 0.8

0

20

40

60

80

r/a

pa
ra

lle
l c

ur
re

nt
 d

en
si

ty
 <

j e,
//B

>
 (

a.
u.

)

 

 

before turb.
turb. phase
~ <δφ2> (a.u.)
<j

bs
B>

0.3 0.4 0.5 0.6 0.7 0.8

−2

0

2

r/a

<
k //δn

e,
k

2
>

 (
a.

u.
)

• Underlying process is turbulence-induced
electron-ion momentum exchange

• Drive a net current but not change total
momentum

• k‖-symmetry breaking can be caused by fluctuation intensity gradient

• j‖,turb direction may link to sign of 〈k‖〉 and then turb. intensity gradient
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Turbulence-produced electron parallel Reynolds stress
drives fine-scale anomalous current near rational surface
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• Modify current density profile near a rational surface but not total current

• Radial scale of electron current corrugation ∼ a few ρs

• Πrs
e,‖ closely correlates with both turbulence intensity gradient and ZF

shear through their effects on k‖-symmetry breaking
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Turbulence may considerably reduce electron current
from NC bootstrap level in low collisionality regime
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• Reduction of electron current relative to Jbs increases as ν∗
e decreases

• Possible impact on fully non-inductive steady state operation in burning
plasma regime (?)
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Characteristic dependence of fluctuation induced current
generation from test-particle-simulation is consistent
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• Test particle simulations with given static fluctuations from NL GTS run

– close to situations/assumptions that theory is conducted

– useful for developing and testing theory

• Turbulence induced current reduces bootstrap current in low-ν∗ regime

– consistent with fully nonlinear simulation result

• Self-generated current is reduced as fluctuation level increases
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Dissipative-TEM may provide a distinct, key turbulence
source for transport and confinement in ST experiments
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• Capable to survive strong E × B shear in NSTX
(CTEM strongly suppressed by collisions in STs)

• Drives experimentally relevant transport in NSTX

• DTEM driven-transport increases with νe

(possible source for ST H-mode confinement scaling)

• C/DTEM-free regime in low collisionality
(possibly relevant to NSTX-U & ST-FNSF)
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Dissipative-TEM turbulence may significantly modify
plasma self-generated current in NSTX
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• Increase total current in NSTX where collisionality is relatively high

15



Summary

Nonlinear global gyrokinetic simulation with consistent turbulent and
neoclassical dynamics is used to study plasma current generation

• Plasma self-generated current can be strongly modified by turbulence

– profile structure; – amplitude; – phase space structure

• Current diffusion induced by turbulence spreading generates finite current
in flat pressure region

• Mechanisms include i) electron parallel acceleration; ii) resid. stress drive

– k‖-symmetry breaking plays an important role

– j‖,turb direction may link to sign of 〈k‖〉, and then to turbulence

intensity and zonal flow profiles

• Turbulence may enhance plasma self-generated current in high-ν∗
e regime,

but deduct it in low-ν∗
e regime

– reduction of electron current relative to Jbs increases as ν∗
e decreases

• Self-generated current is reduced as fluctuation level increases

Experimental verification is critical: to examine characteristic trend predicted
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