



# **Advanced Projects Research Activities**

Hutch Neilson Department Head

> NSTX-U Meeting 30 July 2018

## **Advanced Projects Team**



| Notes: |                                                                           |  |  |
|--------|---------------------------------------------------------------------------|--|--|
| 1.     | Leader of national Fusion Energy System Studies (FESS) program, C. Kessel |  |  |
| 2.     | Co-chair of National Stellarator Coordinating Committee, D. Gates         |  |  |
|        |                                                                           |  |  |

3. U.S. Technical Coordinator for W7-X collaboration, D. Gates

## Fusion Energy Systems Studies (FESS) The Integrating Component of the Virtual Laboratory for Technology

**FESS provides** advanced design studies that integrate multiple disciplines and guide R&D priorities, with a focus on next step facilities

**Present work**: Liquid Metal Plasma Facing Components (\$1,500k/yr. nationally)

- Study is responsive to 2015 PMI Community Workshop and considers:
  - Liquid metal layer, Solid substrate, First wall & divertor concept
  - Integration in a fusion machine, e.g. FNSF
- Study will finish at the end of CY2018, but is already influencing research choices:
  - Corrosion experiments (ORNL); Lithium PFC research priorities (PPPL)

### **PPPL Scope**

- National team leadership
- Systems and core physics analyses
- Liquid metal properties and analyses
- Other engineering analyses

# FESS has been examining Liquid Metal Plasma Facing Components – response to 2015 PMI Community Workshop

\* We are considering thin liquid metal approaches (0.1-5.0 cm thick layers), imagine these PFCs on top of a normal blanket or divertor.....Use FNSF design as baseline for analysis

| Liquid<br>Metals                      | Losses, temperature range<br>Impurities<br>Nuclear properties<br>Hydrogen pickup, solubility, hydriding                                                                      | LM specific R&D<br>Offline<br>experiments for<br>specific concept |
|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| Solid<br>Substrates &<br>Interactions | Require fusion relevant materials<br>Must eliminate liquid metal embrittlement failure<br>Static corrosion tests on-going at ORNL<br>Refractory coatings, insulator coatings |                                                                   |
| LM PFC<br>Concepts:<br>FW<br>Divertor | Flowing LMLi vapor box divertorCapillary systemTub divertor                                                                                                                  | Simulation needs<br>to advance R&D                                |
| LM PFC<br>Integration<br>Aspects      | Tritium extraction<br>Back-end loop, tritium and impurity concentrations<br>Thermal conversion<br>Elow around EW penetrations                                                | Need for<br>confinement<br>facility testing                       |

## **PPPL Supports the Community Vision for U.S. Stellarator Research**



## **PPPL Physicists and Equipment Play Key Roles in W7-X Research**



#### Plasma control: S. Lazerson

- Control of divertor heat-load balance with trim coils.
- Field error measurements, effects, and correction.

#### Leadership

- U.S. W7-X Technical Coordination: D. Gates
- W7-X Scenarios Task Force Leader: S. Lazerson
- U.S. National Stellarator Coordination: D. Gates

#### **Experiment-Theory Comparisons Provide Confidence in E, Predictions**

- PPPL-led team uses x-ray spectrometer (XICS) to measure core ion temperature and poloidal flow velocity profiles.
- Radial E-field (E<sub>r</sub>) is inferred from measured profiles.  $\frac{2}{3}$
- Neoclassical predictions for E, are similar in structure and magnitude to measured profiles.
- SFINCS\* 4D Drift-Kinetic continuum code used for neoclassical calculations. (\*M. Landreman, Univ. of Md.)
- Crossover from electron-root to ion-root in excellent agreement.



#### **Core transport physics: N. Pablant**

- X-ray imaging crystal spectrometer operation & upgrades.
- Collaboration with IPP, Auburn Univ. NIFS

#### Now through FY-2020

U.S. XICS provides excellent spatial coverage

and transport in Wendelstein 7-X plasmas." Phys. Plas. 25 (2018) 022508.

- Complete the OP1.2 campaign
- Collaborate in analysis and publication of OP1.2 results
- Explore opportunities with LHD
- Prepare for OP2

## We are a partner with ORNL and IPP in the W7-X Pellet Project



PPPL-designed vacuum pumping instrumentation and control layout.

#### **PPPL responsibilities:**

- Support structure
- I&C engineering (in collaboration with ORNL & IPP)
- Vacuum pumping design optimization
- Deputy project manager (HN), W7-X management interface.