CAE structure measurements in DIII-D

Understanding of high frequency Alfvén activity important to transport and fast-ion diagnosis

• **Compressional (CAE) and global (GAE) Alfvén eigenmodes** linked to enhanced core electron thermal transport (χ_e) in NSTX

- **CAEs and GAEs are potentially powerful diagnostic for fast-ion population in burning plasma environment**
	- nominally driven by Doppler-shifted cyclotron resonance with fast ions => deeper understanding enables "MHD spectroscopy"

CAE and GAEs linked to enhanced core electron thermal transport in NSTX

- **CAE and GAE activity correlate with enhanced core** χ_e in NSTX
- **Proposed mechanisms:**
	- Resonant orbit stochastization \Rightarrow enhanced χ_e
	- CAEs/GAEs couple to Kinetic Alfvén Waves (KAWs), which channel energy out of the core

[Gorelenkov NF 2010]

[Kolesnichenko PRL 2010], [Belova PRL 2015]

High frequency Alfvén eigenmodes driven unstable by Doppler-shifted cyclotron resonance with fast ions

- **Compressional/Global Alfvén eigenmodes (CAE/GAE) => same instability as coherent Ion Cyclotron Emission (ICE)**
	- For cyclotron resonance, [N.N. Gorelenkov NF 2003]

 $\omega - k_{\parallel} v_{b\parallel} = l \omega_c, l = \cdots, -1, 0, 1, \dots$ [Dendy, PoP 1994]

- $-k_1\rho_b$ stabilizing in some ranges and destabilizing in others
	- Anisotropy important
	- Perpendicular instability condition requires finite orbit widths:

CAEs: $1 < k_1 \rho_h < 2$

GAEs: $2 < k_1 \rho_b < 4$

- For CAEs, $\omega^2 \approx k^2 v_A^2$
- For GAEs, $\omega^2 \approx k_{\parallel}^2 v_A^2$
	- Dispersion relationships modified by finite ω/ω_{ci} (important to existence of GAEs)

CAE with observed beam current threshold

- V_B constant as I_B ramped **(variable perveance)**
- **CAEs abruptly disappears as IB drops below threshold**

caveats:

DIEGO

- delay in CAE start => due to beam density build-up?
- CAE reappears => due to sawtoothing?

Reflectometer array measures CAE \widetilde{n} across plasma

• X-mode or O-mode => reflection at f_{RH} or f_{pe}

SAN DIEGO

 \cdot global mode: path length fluctuations (\tilde{l}) ~ from \widetilde{n} @ cutoff

Reflectometer array shows CAE structure is global

- Global CAE observed with reflectometers in I_B ramp at constant V_B
- **CAE aliased from** *f* **~ 5.5 MHz to ~ 4.5 MHz (10 MHz sampling rate)**

Use singular value decomposition to isolate "global mode" from signal array

- **array of signals contains global mode + noise/turbulence**
- **SVD separates signal matrix into global modes + noise/turbulence**

s!#\$ = s!# &\$ → () ∈ +,-./ s!)0#s!) &\$ + 2# &\$

• **Steps before SVD …**

- bandpass filter signals to isolate mode
- make signals complex ⇒ temporal phase factors out automatically:

•
$$
\tilde{s}_j(t) = A(t) \cos(\theta(t) + \theta_{0j}) \rightarrow \hat{\tilde{s}}_j(t) = \frac{1}{\sqrt{2}} A(t) e^{i((\theta(t) + \theta_{0j}))} =
$$

\n
$$
\frac{1}{\sqrt{2}} \int_0^\infty d\omega e^{i\omega t} \int_{-\infty}^\infty dt' \tilde{s}(t') e^{-i\omega t'}
$$

SVD shows one dominant "mode"

- - 5 ms records (no overlap), 60 kHz bandwidth
	- large amplitude subdominant mode (~ 25 % fluctuation power)
		- @ ~ same frequency => Distinct modes **OR**
			- $\#1+\#2$ = single mode w/time-dependent structure (\lt ~5 ms modulation)?
			- #2 is SVD artifact?

• **Low amplitude components = noise/turbulence**

Dominant SVD modes have global structure

- **Modes have broad structure**
- **Modes peak at mid-radius (R ~ 2 m)**

- **CAEs observed during beam current ramp at constant voltage**
- **Reflectometers observe global structure**
- **Modes peak at mid-radius (R ~ 2 m)**
- **SVD analysis one dominant mode**
	- Subdominant mode @ ~ same frequency => time-dependent CAE structure?

Future Work

- **Toroidal mode numbers from ICE toroidal loops**
- **Comparison with theory/simulation**

