CAE structure measurements in DIII-D

GENERAL ATOMICS

Understanding of high frequency Alfvén activity important to transport and fast-ion diagnosis

• Compressional (CAE) and global (GAE) Alfvén eigenmodes linked to enhanced core electron thermal transport (χ_e) in NSTX

- CAEs and GAEs are potentially powerful diagnostic for fast-ion population in burning plasma environment
 - nominally driven by Doppler-shifted cyclotron resonance with fast ions => deeper understanding enables "MHD spectroscopy"

CAE and GAEs linked to enhanced core electron thermal transport in NSTX

- CAE and GAE activity correlate with enhanced core χ_e in NSTX
- Proposed mechanisms:
 - Resonant orbit stochastization => enhanced χ_e
 - CAEs/GAEs couple to Kinetic Alfvén Waves (KAWs), which channel energy out of the core

[Gorelenkov NF 2010]

[Kolesnichenko PRL 2010], [Belova PRL 2015]

High frequency Alfvén eigenmodes driven unstable by Doppler-shifted cyclotron resonance with fast ions

- Compressional/Global Alfvén eigenmodes (CAE/GAE) => same instability as coherent Ion Cyclotron Emission (ICE)
 - For cyclotron resonance, [N.N. Gorelenkov NF 2003]

 $\omega - k_{\parallel} v_{b\parallel} = l \omega_c, l = \cdots, -1, 0, 1, \dots$ [Dendy, PoP 1994]

- $-k_{\perp}\rho_{b}$ stabilizing in some ranges and destabilizing in others
 - Anisotropy important
 - Perpendicular instability condition requires finite orbit widths:

CAEs: $1 < k_{\perp}\rho_b < 2$

GAEs: $2 < k_\perp \rho_b < 4$

- For CAEs, $\omega^2 \approx k^2 v_A^2$
- For GAEs, $\omega^2 \approx k_{\parallel}^2 v_A^2$
 - Dispersion relationships modified by finite ω/ω_{ci} (important to existence of GAEs)

CAE with observed beam current threshold

- V_B constant as I_B ramped (variable perveance)
- CAEs abruptly disappears as I_B drops below threshold

<u>caveats:</u>

N DIEGO

- delay in CAE start => due to beam density build-up?
- CAE reappears => due to sawtoothing?

Reflectometer array measures CAE \widetilde{n} across plasma

• 8 channels: 55 – 75 GHz

SAN DIEGO

X-mode or O-mode => reflection at f_{RH} or f_{pe}

• global mode: path length fluctuations (\tilde{l}) ~ from \tilde{n} @ cutoff

Reflectometer array shows CAE structure is global

- Global CAE observed with reflectometers in I_B ramp at constant V_B
- CAE aliased from $f \sim 5.5$ MHz to ~ 4.5 MHz (10 MHz sampling rate)

Use singular value decomposition to isolate "global mode" from signal array

- array of signals contains global mode + noise/turbulence
- SVD separates signal matrix into global modes + noise/turbulence

$$\tilde{\mathbf{s}}_{jk} = \tilde{\mathbf{s}}_j(t_k) \rightarrow \sum_{m \in \text{modes}} \tilde{\mathbf{s}}_{m0_j} \tilde{\mathbf{s}}_m(t_k) + \epsilon_j(t_k)$$

Steps before SVD ...

- bandpass filter signals to isolate mode
- make signals complex \Rightarrow temporal phase factors out automatically:

•
$$\tilde{s}_{j}(t) = A(t)\cos(\theta(t) + \theta_{0j}) \rightarrow \hat{\tilde{s}}_{j}(t) = \frac{1}{\sqrt{2}}A(t)e^{i((\theta(t) + \theta_{0j}))} = \frac{1}{\sqrt{2}}\int_{0}^{\infty} d\omega e^{i\omega t} \int_{-\infty}^{\infty} dt' \tilde{s}(t')e^{-i\omega t'}$$

SVD shows one dominant "mode"

- 5 ms records (no overlap), 60 kHz bandwidth
 - large amplitude subdominant mode (~ 25 % fluctuation power)
 - $@ \sim \text{ same frequency} => \text{ Distinct modes } \mathbf{OR}$
 - #1+#2 = single mode w/time-dependent structure (< ~5 ms modulation)?
 - #2 is SVD artifact?

Low amplitude components = noise/turbulence

Dominant SVD modes have global structure

- Modes have broad structure
- Modes peak at mid-radius (R ~ 2 m)

- CAEs observed during beam current ramp at constant voltage
- Reflectometers observe global structure
- Modes peak at mid-radius (R ~ 2 m)
- SVD analysis one dominant mode
 - Subdominant mode @ ~ same frequency => time-dependent CAE structure?

Future Work

- Toroidal mode numbers from ICE toroidal loops
- Comparison with theory/simulation

