

Local compressional and global Alfvén eigenmode structure on NSTX and their effect on core energy transport*

NA Crocker,¹ E Belova,² RB White,² ED Fredrickson,² NN Gorelenkov,² K Tritz,³ WA Peebles,¹S Kubota,¹ A Diallo,² BP LeBlanc² and SA Sabbagh ¹UCLA, ²PPPL, ³JHU

NSTX-U/Magnetic Fusion Science Meeting Aug. 27, 2018

*Supported by US DOE Contracts DESC0011810, DE-FG02-99ER54527 & DEAC0209CH11466

Novel reflectometry analysis improves CAE & GAE measurements and understanding of χ_e

- Motivation compressional (CAE) and Global Alfvén eigenmodes (GAE) proposed to cause high anomalous core χ_e
- New multi-channel reflectometer analysis \Rightarrow more accurate δn amplitude and structure
- δn used to test hypothesis for anomalous core χ_e
 - simulation of e^- drift orbit modification predicts χ_e compared to TRANSP
- δn compared to HYM simulations
- δn used with HYM to test alternate hypothesis CAE-KAW coupling

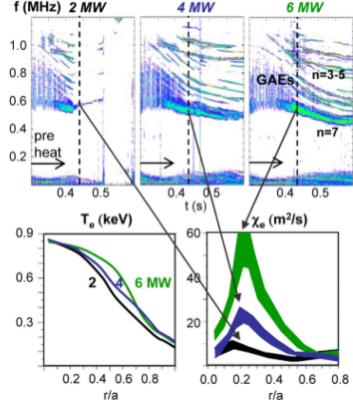
Motivation: CAEs & GAEs candidates for core energy transport in NSTX

 CAEs & GAEs excited by Dopplershifted cyclotron resonance with beam ions

[N. N. Gorelenkov, NF 2003]

 CAE & GAE activity correlates with enhanced χ_e in core [D. Stutman, PRL 2009; K. Tritz, APS 2010 Invited Talk; N. A. Crocker, PPCF 2011

- T_e profile flattens as P_{NB} increases
- $-\chi_e$ from TRANSP modeling
- Two leading hypotheses:
 - Stochastization of e⁻ guiding center orbits enhance χ_e [NN Gorelenkov, NF 2010]
 - Coupling to KAWs = missing transport channel ⇒ TRANSP **Gets** χ_{e} **Wrong** [Ya.I. Kolesnichenko, PRL 2010, E.V. Belova, PRL 2015]

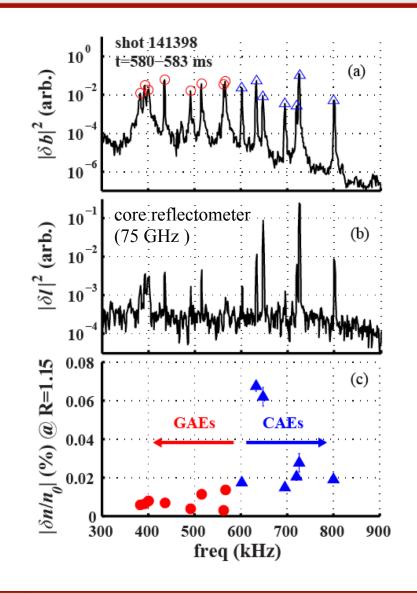


6 MW

[D. Stutman et al., PRL 102 115002 (2009)]

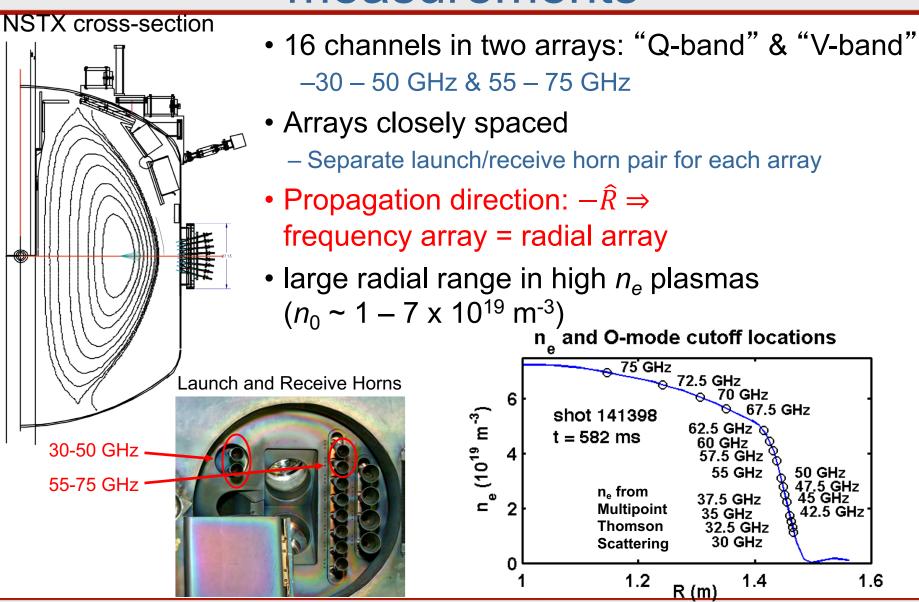
Reflectometer array measures δn of CAEs & GAEs

- Reflectometer array sees global modes identified as CAEs & GAEs
 [N.A. Crocker, PPCF 2011]
- New analysis gives $\delta n/n_0$; in core:
 - -CAE: $\delta n/n_0 \sim 10^{-4} 10^{-3}$
 - $-GAE: \delta n/n_0 \sim 10^{-5} 10^{-4}$
- δn from measurements via "synthetic diagnostic"
- Reflectometer "signal-tonoise" improved via correlation with δb



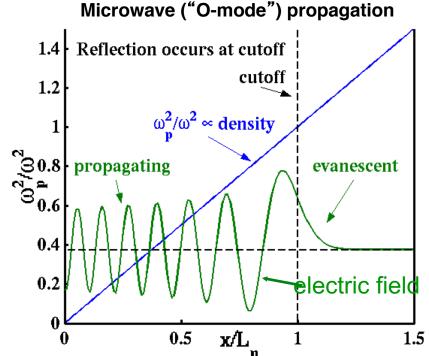
Measurement Technique

Reflectometers provide radial array of measurements



Reflectometers measure density fluctuations in plasma

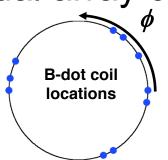
- Microwaves reflect at "cutoff"
 - O-mode: $\omega^2 = \omega_p^2 + c^2 k^2$
 - microwaves reflect at k = 0 $(\omega_p = \omega)$
 - Measurement: path length fluctuations (δl) caused by δn



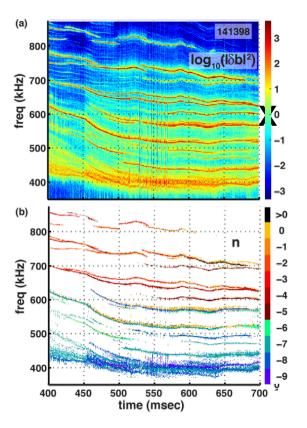
- δl sensitive to cutoff motion, but δn along path contributes (a.k.a. "interferometer effect")
- cutoff motion dominates as $k_r \rightarrow 0$ (rigid displacement)

Toroidal mode numbers and frequencies determined with edge B-dot array

- Modes appear as peaks in δb spectrum
- n determined from δb measured by edge toroidal array of B-dot coils



Smallest coil spacing is 10° ⇒
 can distinguish |n| ≤ 18



N. A. Crocker, et al. Nucl. Fusion 2013

Reflectometer Analysis Technique

δn determined via synthetic diagnostic

- Synthetic diagnostic models path length
 - WKB path length integral:

$$l = l_0 + \delta l = \int_{R_{edge}}^{R_{cutoff}} dR \sqrt{1 - \omega_p^2(R)/\omega^2}$$

$$\omega_p^2(R_{cutoff}) = \omega^2, \omega_p^2 = \omega_{p0}^2 + \delta \omega_p^2 \propto n_0 + \delta n$$

• δn modeled with cutoff displacement (d) basis functions:

$$\delta n(R) = -\nabla n_0(R) \sum_i a_i d_i(R)$$

- cubic B-splines for $d_i(R)$
- set of $a_i \Rightarrow \delta l_{fit}$ for all channels
- find of set of a_i to minimize

$$\chi^{2} = \sum_{i} (\delta l_{j,meas} - \delta l_{j,fit})^{2} / (\sigma_{j,meas}^{2})$$

Cutoff displacement basis functions (cubic "B-splines"; cutoff locations as knots) $\delta n_i(R) =$ $-d_i(R)\nabla n_0(R)$

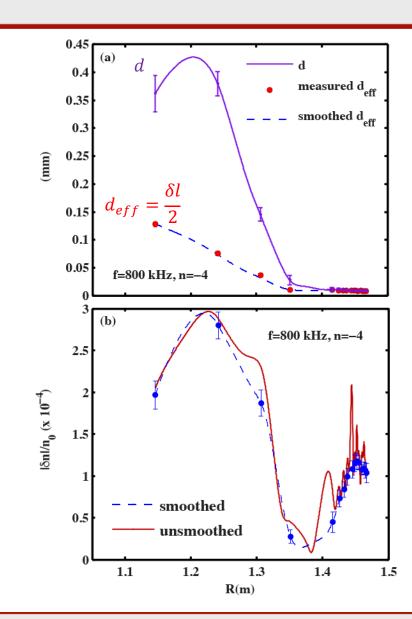
1.3

1.4

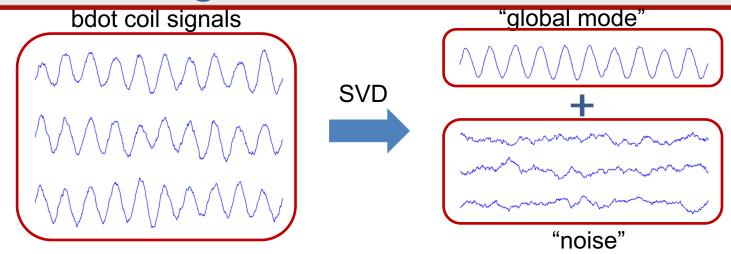
1.1

δn determined via synthetic diagnostic

- Fit naturally yields d(R) along with $\delta n(R)$
- Fit sensitive to noise
 - \Rightarrow use smoothed δl_{meas} for inversion
 - smoothing = low spatial filter
 - -smoothed δl within uncertainty of δl_{meas}
 - can't know if short scale structure in δn is real, given uncertainties



Singular value decomposition gives better "global mode" δb



- global mode observed by 10 bdot coils (HN array)
- "filter" signals with SVD ⇒ global mode w/reduced noise
 - SVD factors space & time dependence of signal matrix:

$$b_{jk} = \tilde{b}_j(t_k) \rightarrow \tilde{b}_{0j}\tilde{b}_{global}(t_k) + \epsilon_j(t_k)$$

- Steps before SVD ...
- 1) bandpass filter coil signals to isolate mode
- 2) make signals complex \Rightarrow spatial phase (e.g. $n\phi_i$) factors out automatically:

$$\tilde{b}_{j}(t) = A(t)\cos(\theta(t) + \theta_{0j}) \rightarrow \hat{b}_{j}(t) = \frac{1}{\sqrt{2}}A(t)e^{i(\theta(t) + \theta_{0j})} = \frac{1}{\sqrt{2}}\int_{0}^{\infty} d\omega e^{i\omega t} \int_{-\infty}^{\infty} dt' \tilde{b}(t')e^{-i\omega t'}$$

SVD finds global mode from eigenvector of signal correlation matrix

SVD solves factoring problem

$$\hat{b}_j(t_k) = \hat{b}_{0j}\hat{b}_{global}(t_k) + \hat{\epsilon}_j(t_k)$$

• by minimizing χ^2 :

$$\chi^2 = \sum_{j,k} \left| \hat{\tilde{b}}_j(t_k) - \hat{\tilde{b}}_{0j} \hat{\tilde{b}}_{global}(t_k) \right|^2$$

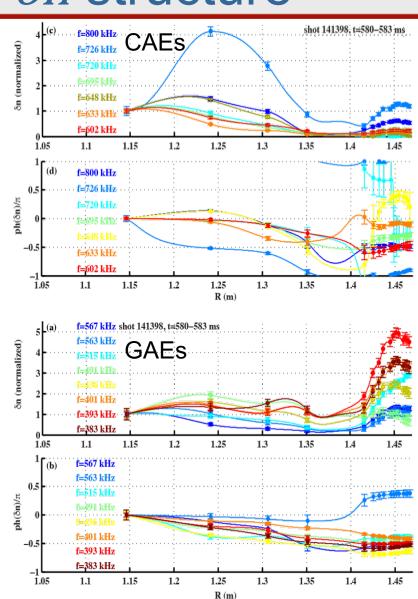
• \Rightarrow spatial coefficients $(\hat{\tilde{b}}_{0_j})$ of global mode from eigenvector of correlation matrix with largest eigenvalue:

$$\mathbf{C}\hat{\tilde{\mathbf{b}}}_{0} = \lambda \hat{\tilde{\mathbf{b}}}_{0}$$
$$[\mathbf{C}]_{ij} = \left\langle \hat{\tilde{b}}_{i}(t)\hat{\tilde{b}}_{j}^{*}(t) \right\rangle, \left[\hat{\tilde{\mathbf{b}}}_{0}\right]_{i} = \hat{\tilde{b}}_{0j}$$

Results of Reflectometer Analysis

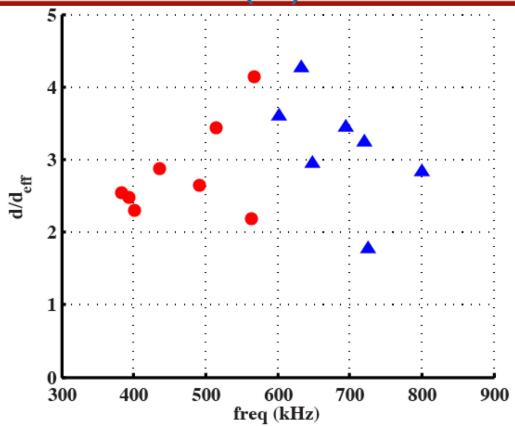
CAEs and GAEs have different δn structure

- CAEs have large, broad core peaks & small edge amplitude
- GAEs have low amplitude, broad structure in core & large edge peaks
- Note: large edge peaks can be caused by small edge radial displacements



New analysis gives 2–4 x larger cutoff displacement (d)

- Old analysis: $d_{eff} = \delta l/2$
 - $-\delta l$ attributed to cutoff displacement ("mirror approximation")
- New d is 2 4 x larger
 ⇒ larger plasma
 displacement



- Cutoff displacement ≠ plasma displacement
 - Compression also causes cutoff displacement

Plasma displacement (ξ) estimated from δn

Get ξ from measurement:

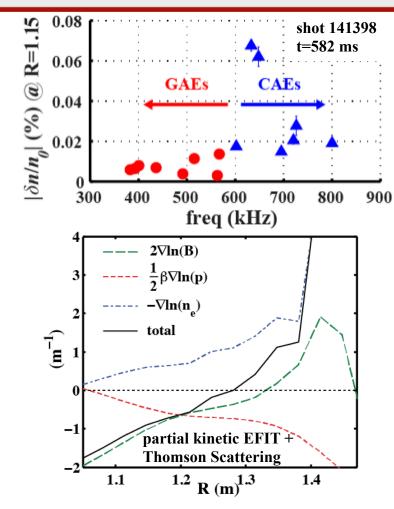
$$\delta n/n0 = -\nabla \cdot \boldsymbol{\xi} - \boldsymbol{\xi} \cdot \nabla \ln(n_0)$$

• Neglect finite ω/ω_{ci} , assume $E_{\parallel}=0$

$$\nabla \cdot \mathbf{\xi} = \nabla \cdot ((\mathbf{E} \times \mathbf{B}) / (-i\omega B^2))$$

$$\approx -\delta b_{\parallel}/B_0 - \xi \cdot \left(\frac{1}{2}\beta\nabla \ln(p_0) + 2\nabla \ln(B_0)\right)$$

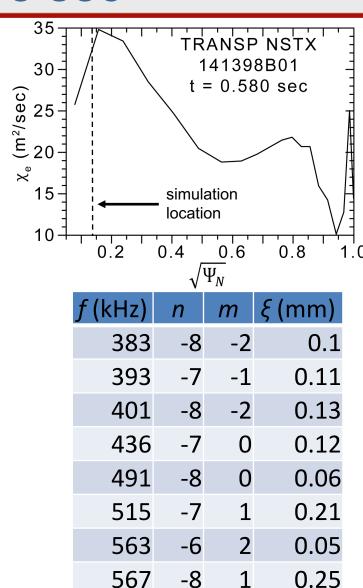
- GAEs: $\xi_R \approx 0.7 L_n \, \delta n/n$ \mathscr{Q} R = 1.15 m
 - assume $\tilde{b}_{\parallel}=0$
 - $-L_n \sim 1.7 \text{ m}$
 - $-n_0/n \approx 1.05$
- CAEs: $\delta n/n_0 \approx -\nabla \cdot \xi \approx \delta b_{\parallel}/B_0$



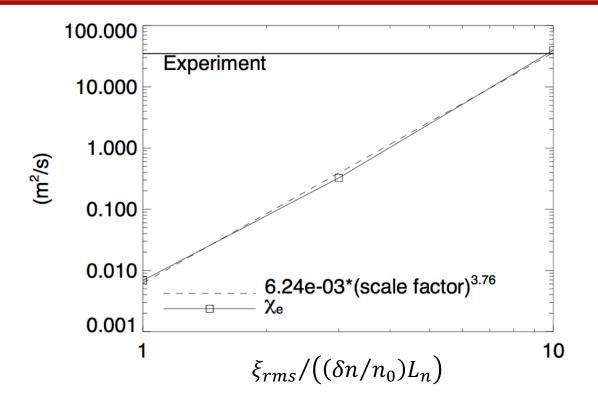
Prediction of χ_e and comparison with TRANSP

χ_e from GAEs simulated for 6 MW H-mode 141398, t = 0.58 sec

- Anomalous core χ_e (~ 35 m²/s) in 6 MW H-mode
- e^- guiding center orbit spreading simulated by ORBIT => χ_e (see e.g. [NN Gorelenkov NF 2010])
 - B-field from experiment (B_{T0} =0.45 T)
 - at t=0, isotropic thermal population ($T_e=1$ keV), δ -function at $\Psi_N^{-1/2}=0.15$
 - collisionless
 - population spreads with time => D_e , $\chi_e = \frac{3}{2}D_e$
- 8 GAEs
 - $-\xi_{rms}$ ~ 0.4 mm (using $\xi \approx (\delta n/n_0)L_n$)
 - $-\omega = k_{||} V_A => |\mathbf{m}| = 0 2$
 - poloidal+toroidal Fourier modes used



χ_e from GAEs in simulation much less than from TRANSP



- χ_e << 1 m²/s for ξ_{rms} ~ $(\delta n/n_0)L_n$
- scaling study $\Rightarrow \chi_e$ sensitive to amplitude ($\chi_e \propto \xi^{3.76}$)
- need $\xi = 10^* \xi_{rms}$ for agreement with TRANSP

Inclusion of CAEs as shear modes increases simulated χ_e , but still not enough

- 7 CAEs (15 modes total)
- If CAEs are shear modes: CAE $\delta n >>$ GAE $\delta n \Rightarrow$ CAE $\xi >>$ GAE ξ
 - $-\xi_{rms}$ ~ 1.8 mm for CAEs (1.9 mm all modes)
 - -using $\xi \approx (\delta n/n_0)L_n$
- Shear CAEs ⇒ large m

$$-\omega = k_{||} V_A => |\mathbf{m}| = 4-10$$

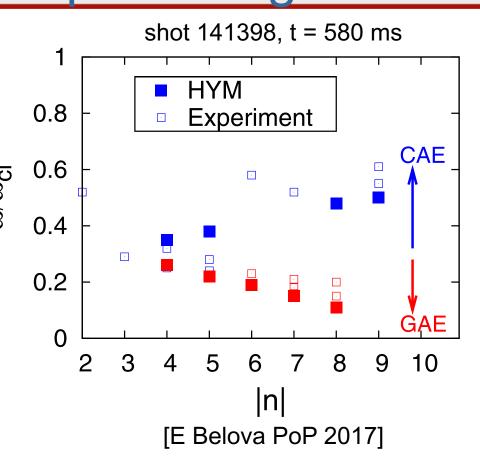
- $\chi_e = 8 \text{ m}^2/\text{s} \text{ at } \xi_{rms} \sim 1.9 \text{ mm}$
 - expect 2 m²/s from GAE-only simulation scaling
 - more modes = more stochastic?
- Need $\xi_{rms} \sim 3*(1.9 \text{ mm})$ for $\chi_e = 34 \text{ m}^2/\text{s} \sim \chi_e,_{\text{expt}}$

f(kHz)	n	m	<i>ξ</i> (mm)
602	-5	4	0.31
633	-4	5	1.23
648	-1	8	1.05
695	-5	5	0.26
720	0	10	0.36
726	-3	7	0.57
800	-4	7	0.32

Comparison with HYM Simulation and Test of CAE-KAW Coupling

Initial comparison of HYM simulation & measurement promising

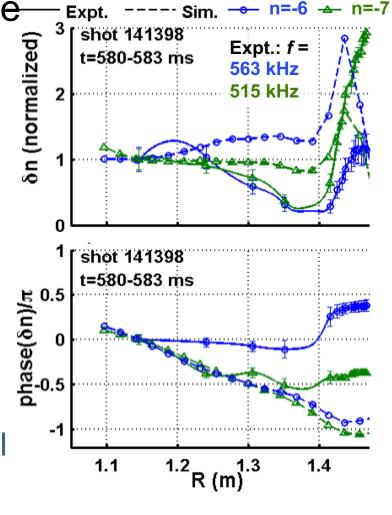
- Hybrid MHD (HYM) code simulates CAE structure & stability
 - -3D, ideal MHD fluid & δf solver full orbit fast-ions
 - realistic equilibrium
- Simulation & experiment compared for beam heated H-mode plasma



 Most-unstable modes have f & n similar to observed experimental spectrum [E Belova PoP 2017]

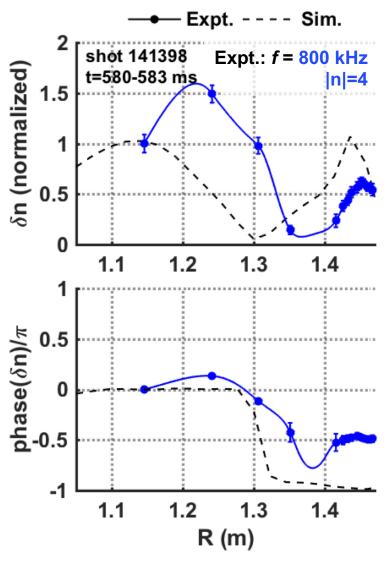
Initial comparison of HYM simulation & measurement promising

- HYM simulation: most unstable n = 6 & 7 modes counter propagating GAEs
- Structure similarities: broad core & strong edge peaking
- Simulation shows stronger phase change across minor radius
- Expect structure sensitive to
 - − B₀ structure − included in HYM
 - Hall effect (finite ω/ω_{ci}) & toroidal rotation under development for HYM



Initial comparison of HYM simulation & measurement promising

- CAE structure similarities: broad core peaks & small edge amplitude
- CAEs co-propagating in simulation; counter-propagating in experiment.
 - further work needed to understand
- Expect structure sensitive to
 - |B₀| structure included in HYM
 - Hall effect (finite ω/ω_{ci}) & toroidal rotation under development for HYM



Measurements + Simulation ⇒ Small CAE-KAW energy transport

- HYM: n = 4 CAE, $\frac{\delta b_{\parallel}}{B_0} \sim 6.6$ x $10^{-3} \Rightarrow P = 1.2$ MW CAE-KAW energy coupling transport: [E Belova PoP 2017]
 - -simulation ξ scaled to $d_{eff} \Rightarrow \frac{\delta b_{\parallel}}{B_0} \sim 0.9 3.4 \times 10^{-3}$
- New approach: $\delta n/n \approx \delta b_{\parallel}/B$ in core \Rightarrow 2 x 10⁻⁴ < $\delta b_{\parallel}/B$ < 7 x 10⁻⁴
 - $-\delta n/n_0$ measured @ R=1.15 m
- $P \propto \delta b_{\parallel}^2 \Rightarrow P = 0.03$ MW total for all modes
 - assume $P/\delta b_{\parallel}^2$ same for all modes
- Could improve estimate by rescaling HYM modes with measured $\delta n/n$.

Conclusions and Future Work

New δn measurements advance understanding of CAE & GAE effect on core energy transport

- New multi-channel reflectometer analysis \Rightarrow more accurate δn internal amplitude and structure
 - cutoff displacement larger than previous analysis
- GAE modification of e^- drift orbits \Rightarrow GAEs (or GAE+shear CAEs) too small to explain χ_e from TRANSP
- Measured and simulated GAE structures show rough similarities
 - HYM development currently under way may explain differences
- New δn + HYM Poynting Flux ⇒ CAE-KAW energy flux small

Many avenues for future work

- Improve reflectometer analysis
 - better synthetic diagnostic ⇒ raytracing
 - better alternatives to SVD filtering?
- Improve ORBIT modeling
 - better GAEs (finite ω/ω_{ci} , realistic poloidal structure,...)
 - ORBIT modified for CAEs. Requires verification...
 - simulation with modes from HYM (or other codes)
 - better electromagnetic amplitudes from δn

Many avenues for future work

- Understand simulation & measured structure differences
 - exploit measured phase to understand role of Hall effect & rotation?
- Improve CAE-KAW estimate from HYM: rescale HYM modes with measured $\delta n/n$

Appendix: Plasma displacement (ξ) estimated from δn

- Get ξ from measurement: $\delta n/n_0 = -\nabla \cdot \xi \xi \cdot \nabla \ln(n_0)$
- Neglect finite ω/ω_{ci} , Assume $E_{\parallel}=0$ & $\mathbf{J_0}\times\mathbf{B_0}-\nabla p_0=0$

$$\nabla \cdot \boldsymbol{\xi} = \nabla \cdot \left(\frac{\delta \mathbf{E} \times \mathbf{B_0}}{-i\omega B_0^2} \right) = \frac{\mathbf{B_0}}{-i\omega B_0^2} \cdot \nabla \times \delta \mathbf{E} - \frac{\delta \mathbf{E}}{-i\omega} \cdot \nabla \times \frac{\mathbf{B_0}}{B_0^2}$$

$$= \frac{\mathbf{B_0}}{-i\omega B_0^2} \cdot \nabla \times \delta \mathbf{E} - \frac{\delta \mathbf{E}}{-i\omega B_0^2} \cdot \nabla \times \mathbf{B_0} - \frac{\delta \mathbf{E}}{-i\omega} \cdot (\nabla B_0^{-2} \times \mathbf{B_0})$$

$$= -\frac{\delta \mathbf{B} \cdot \mathbf{B_0}}{B_0^2} - \frac{\mu_0 \delta \mathbf{E}}{-i\omega B_0^2} \cdot \mathbf{J_0} + \frac{2\delta \mathbf{E}}{-i\omega B_0^2} \cdot (\nabla \ln(B_0) \times \mathbf{B_0})$$

$$= -\frac{\delta \mathbf{B} \cdot \mathbf{B_0}}{B_0^2} - \mu_0 \frac{\delta \mathbf{E} \times \mathbf{B_0}}{-i\omega B_0^4} \cdot \nabla p_0 - \frac{2\delta \mathbf{E} \times \mathbf{B_0}}{-i\omega B_0^2} \cdot \nabla \ln(B_0)$$

$$= -\frac{\delta \mathbf{B} \cdot \mathbf{B_0}}{B_0^2} - \frac{1}{2}\beta \boldsymbol{\xi} \cdot \nabla \ln(p_0) - 2\boldsymbol{\xi} \cdot \nabla \ln(B_0)$$

