SOL and divertor-leg filaments in the NSTX/NSTX-U divertor

NSTX-U Monday Physics Meeting

F. Scotti, S. Zweben (PPPL), V.A. Soukhanovskii, D. Baver, J. Myra (Lodestar)

Characterization of SOL and divertor turbulence in NSTX/NSTX-U via imaging of divertor fluctuations

- Understanding SOL/divertor turbulence important for:
 - Characterization of divertor heat flux, wall particle fluxes
 - Interpretation of divertor transport/power balance
- Divertor fluctuations due to midplane blobs:
 - Collisionality, X-point may disconnect blobs from target
 - Turbulence disconnection can affect blob radial velocity
 - Characterization of divertor turbulence due to bobs:
 - Turbulence spatial scales and propagation
 - Correlation with midplane blobs
 - Comparison with analytical models for mode disconnection
- Divertor fluctuations due to divertor-leg instabilities:
 - Characterization of divertor-localized fluctuations:
 - Statistical properties, correlation lengths, radial localization
 - Comparison with modeling to establish driving mechanisms

Midplane and divertor turbulence diagnostics for turbulence connection characterization

F. Scotti, Near and far SOL divertor turbulence in NSTX/NSTX-U

• 3 🞚

In diverted L-modes discharges, fluctuations in divertor Li I emission observed with $\delta I/I$ up to 30-50%

- NSTX Ohmic L-mode discharges
- Broadband fluctuations in region connected to midplane:
 - Fluctuation level decreasing approaching LCFS
- Fluctuations intermittency increases radially
 - Parabolic dependence of kurtosis vs. skewness
- Zero-delay cross correlation shows helical correlation regions at the divertor

Region correlated with upstream blobs corresponds to region with large divertor fluctuations

- Divertor correlates to GPI over region that magnetically maps to GPI field of view, as in [Maqueda NF 2010]
 - Correlation up to 0.65 over $\psi N \sim 1.08-1.3$, peaked at zero delay
- Decrease in cross correlation towards separatrix:
 - Consistent with reduction in fluctuation level in same region

Turbulence scale lengths and propagation calculated from cross correlation maps

- Corr. lengths from zero-delay cross corr.
- Propagation from time-delay cross corr.
- Divertor L_{RAD} interpolating corr. map along filament
 - Projected on R axis
- Divertor L_{TOR} interpolating corr. map at fixed R
 - Projected on φ axis
- Midplane L_{TOR} converted into L_{POL} assuming fieldaligned fluctuations
- 5 repeated Ohmic L-mode discharges (141749-141756)
- Uncertainties estimated evaluating quantities at different poloidal / toroidal locations

0.7

Radius (m)

0.5

0.4Ē

0

Reduced radial turbulence velocities for divertor filaments in disconnected region

- Divertor V_{rad} agree with midplane V_{rad} in far SOL
 - Reduction in V_{rad} with respect to upstream V_{rad} approaching separatrix in disconnected region
- Midplane poloidal velocities in agreement with target filament velocity
 - Shift of 0.05 in normalized flux necessary to match velocity profiles

Reduced radial correlation lengths for divertor filaments in disconnected region

- Divertor L_{rad} evaluated from HWHM of radial correlation function on the SOL side
 - Divertor L_{rad} agree with midplane correlation lengths in far SOL
 - Reduction in $L_{\rm rad}$ with respect to upstream $L_{\rm rad}$ approaching separatrix in disconnected region
- ~2X larger poloidal corr. length on divertor target

Disconnection of divertor turbulence observed approaching resistive X-point blob regime

- Experimental observations are compared with electrostatic two region model [Myra, Pop 2006]
- Blobs observed to lie between sheath connected and resistive X-point regime
- Disconnection of divertor turbulence from upstream blobs observed approaching idealinterchange and resistive X-point regime
- Radial velocity reduction consistent with reduction in polarization drive due to X-point

F. Scotti, Near and far SOL divertor turbulence in NSTX/NSTX-U

STX-L

Summary

- Connection of midplane turbulence to divertor target in NSTX:
 - Decreased fluctuations observed approaching strike point
 - Decreased fluctuations correspond to region with reduced correlation with midplane
 - Divertor filaments scale lengths and propagation consistent with midplane turbulence
 - Reduction in correlation qualitatively consistent with 2-region blob model with X-point geometry causing filament disconnection

New fast camera and high X-point discharges enabled divertor-leg filaments imaging in NSTX-U

 $(\tilde{u}_{2})^{0}$

- NBI-heated NSTX-U L-mode
 - Lower divertor biased double null
 - I_p = 650 kA, f_G ~ 0. 3, BT=0.65T
- Simultaneous imaging with 3 fast cameras
- D-α imaging for midplane turbulence (GPI view, 100kHz)
- Divertor C III imaging (100kHz)
 - Emission along divertor leg
 - Poloidal filament structure
- Divertor D-α imaging (280kHz)
 - <u>Surface localized emission</u>
 - Intersection with target and radial filament structure

Divertor leg fluctuations are proportional to ~ \tilde{n}_e , no correlation with upstream fluctuations

- Broadband fluctuations ~10-50kHz, δI/I ~10-20%, lifetime ~50-100 μs
- Flute-like filament shape suggests generation in divertor region
- Intensity fluctuations ~ ñ_e
 - C III and D-α fluctuations correlated
- Comparable near-Gaussian PDF for inner and outer legs filaments
- No correlation with midplane blobs

12

Field-aligned fluctuations, no correlation between inner and outer leg filaments

F. Scotti, Near and far SOL divertor turbulence in NSTX/NSTX-U

🗕 13 📙

Outer leg filaments are connected to target plate, localized to bad curvature side of strike point

- Cross corr. (5ms) from top-down view (D- α)
- No correlation regions observed in private flux region
- In SOL, correlated structures have spiral shape
 - Footprint of midplane blobs
 - Approaching LCFS, correlation regions have finite toroidal correlation length, L_{RAD} ~1-2 cm
 - Footprint of divertor filaments
- Radial separation betw. divertor and midplane modes
 - Limited penetration of midpane modes close to separatrix

4

Inner and outer leg filaments rotate in opposite toroidal direction, poloidal velocity ~1 km/s

0.5 1.0 Log(Te (eV))

(a)

1.2

1.0

18.10 18.70 19.30 19.90 20.50

Log(Ne (m-3))

(b)

0.4

1.4

1.0

0.8

1.4

0.4

0.6 0.8 R (m)

(1.2) E N

0.8 Log(Ti (eV))

0.8 R (m)

v pol EXB (km/s)

-0.2 0.2 0.6

5

1.0

0.6

- Time-delayed cross corr. for average filament propagation
- Poloidal motion (1-2km/s) for inner/outer leg filaments towards X-point
- Outer leg filaments propagate radially outwards at 0.25km/s
- Multi-fluid UEDGE sim. with full cross field drifts model
 - Filament velocity in outer leg qualitatively consistent with UEDGE estimates for ExB velocity
 - Provide background plasma profiles for simulations

Summary

- Divertor-localized fluctuations in NSTX-U:
 - Intermittent field-aligned filamentary structures localized to the divertor on bad curvature side of inner and outer divertor legs
 - Divertor filaments are connected to the divertor plate
 - Evidence for X-point disconnection:

NSTX-U

- Inner and outer leg filaments are not correlated
- Divertor filaments and midplane blobs are not correlated
- Radial separation between divertor-leg modes and midplane blobs
 - Consistent with limited penetration of midplane modes observed in ArbiTER simulations
- Observations motivated simulations on grid limited to divertor legs only with ArbiTER
 - Unstable resistive ballooning modes observed on both legs in qualitative agreement with experimental observations

🗕 16 🕓