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Why we love predict-first …

• Predict-first can be a powerful tool in the control room
– To optimize the experimental time
– To support decision making (including unexpected failures)

Will show an example of successful application of predict-first:

achievement of sustained qmin with early EC heating and CD
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… and what we should be careful about

• In order to be successful it needs:
– A whole device, comprehensive, time-dependent model                

(equilibrium, transport, MHD, fast ions)
– Verified and validated physics models from high to low fidelity

We are not there yet …

Will discuss limits of predictive models, challenges in experimental preparation 

and identify opportunities for improvement.
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When things go well

Demonstrated sustained qmin with early EC heating and CD
– 100% success in use of resources with one shot planned and executed.
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“Predict First” EC and NBI trajectory achieved high b access with 

no high gain feedback, obtaining smooth, elevated, sustained qmin

with little MHD activity 
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Early EC step-ups

Improved qmin trajectory

High β



“Predict First” EC and NBI trajectory achieved high b access with 

no high gain feedback, obtaining smooth, elevated, sustained qmin

with little MHD activity 
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Early EC step-ups

Improved qmin trajectory

High β

Reproducible plasma, with no feedback on NBI.
Discharge used as a reference for the experimental day 
on reduction of Alfvenic activity lead by C. Collins [GA] 
and part of the JRT 2018



Significant Alfvenic activity present in higher qmin plasma
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Due to the high(er) NBI power already in the ramp-up phase



AE activity triggered by NBI at low plasma current
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•Linear AE stability performed with TRANSP + kick model [M. Podesta’]
•Test:

•Use NBI waveform from #175286 keeping same profiles as in 
reference #172538
•How much does AE drive change?

•#175286 has ~1MW additional NB power after 1.2 sec
•Enough to destabilize several AEs with respect to reference shot



Our success resulted from careful step-forward planning 
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Start with a well 
diagnosed case

Assessment of 
predictive models

Make a small change to the reference
that can be predicted within the limit of the 

models

Run a feedforward experiment            
to validate simulation 

Post-process analysis and validation: assess what is 
missing, what could have been done better



Our success resulted from careful step-forward planning 
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Goal: modify the qmin trajectory to sustain flat q profile 
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Two reference discharges with feedback on bN:
Þ q profile relaxes to monotonic in the stationary phase
Þ MHD in the flattop phase
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Our success resulted from careful step-forward planning 
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Post-process analysis and validation: assess what is 
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Since the goal is to modify the qmin trajectory, the validation 
focusses on the q profile
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Step 1: evolve free-boundary magnetic equilibrium 
with prescribed ne, nC, Te, Ti, vf, profiles

• Expect larger uncertainties in the early ramp-up, at low 
current (no good profile mapping available)

=> but initial condition important for full discharge predictions

• Assuming input profiles are ‘good’, differences due mostly to 
bootstrap current and neutral beam model
=> initial condition important for full discharge predictions
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Since the goal is to modify the qmin trajectory, the validation 
focuses on the q profile
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Step2: evolve free-boundary magnetic equilibrium 
with prescribed ne, nC, vf,  but predict Te, Ti with GLF23 
inside the pedestal
– Our target is to change EC, which affects the electron 

temperature
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Predictions should include the pedestal region
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PROBLEM: pedestal models are not designed for current 
ramp-up/ramp-down conditions

Step3: evolve free-boundary magnetic equilibrium with 
prescribed ne, nC, vf,  but predicted Te, Ti including pedestal
(EPED1-NN)

Þ Need to rescale the pedestal in the ramp-up phase (based 
on comparison between predicted and measured values)
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The selected model reproduces the measured q profile
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… except at low current (remember: initial condition is 
important)

Step4: evolve free-boundary magnetic equilibrium with 
prescribed ne, nC, vf,  but predicted Te, Ti including pedestal 
(rescaled according to plasma current)
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Stick to this model and move to the fun part



Our success resulted from careful step-forward planning 
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Start with a well 
diagnosed case

Assessment of 
predictive models

Make a small change to the reference
that can be predicted within the limit of the 

models

Run a feedforward experiment            
to validate simulation 

Post-process analysis and validation: assess what is 
missing, what could have been done better



We have used prior lessons learnt from ITER modeling
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We have used prior lessons learnt from ITER modeling

9/17/18 Francesca M. Poli 19

0

5

10

10
 

 I P (M
A)

P N
B (M

W
)

1 2 3 4 5
time (s)

0

5

10

10
 

 I P (M
A)

P EC
 (M

W
)

0 0.5 1
sqrt( / b)

1

2

3

4

5

6

7

sa
fe

ty
 fa

ct
or

1 2 3 4 5
time (s)

1

2

3

4

5

6
q m

in

• H&CD from RF in ramp-up critical for access to 
steady-state => focus on core EC

• keep NBI waveform close to reference
• Predict equilibrium and temperature

Þ Sustains higher qmin
Þ more flat q profile in the core

#147634
#172538
predicted

#147634
#172538
predicted

#147634
#172538
New EC waveform

#147634
#172538

New NBI waveform



“Predict First” EC and NBI Trajectory achieved high b access with 
no high gain feedback, obtaining smooth, elevated, sustained qmin

with little MHD activity 
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Early EC step-ups
Improved qmin trajectory

High β



Preliminary analysis after the experiment indicated that 
we achieved all our targets
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Sustained qmin

Sustained qmin at large radius

Flat/weakly reversed profile
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Our success resulted from careful step-forward planning 
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Start with a well 
diagnosed case

Assessment of 
predictive models

Make a small change to the reference
that can be predicted within the limit of the 

models

Run a feedforward experiment            
to validate simulation 

Post-process analysis and validation: assess what is 
missing, what could have been done better



Degradation in Energetic Particle confinement 
correlates with instabilities
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DIII-D

• Measurements deviates from “classical predictions”
• Use neutron rate as global metric of EP confinement

Alfvénic modes

NTMs

~30% reduction in 
neutron rate

classical

measured



MHD codes (NOVA/NOVA-K) used as starting point: 
compute mode structure, damping rates
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• Ideal MHD provides eigenmodes for each toroidal 
mode number

• Set of candidate modes selected based on stability

DIII-D

toroidal AEs

elliptical AEs

stable modes

candidate unstable 
modes



Reduced models (interpretive) reproduce loss of 
performance observed in experiments 
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• Interpretive analysis
– Adjust mode amplitudes to match measured neutron rate

• Linear stability analysis (kick model) indicates large 
number of unstable AEs

• Confinement degradation results in >50% dilution of EP 
density

classical

measured

kick model



Our success resulted from careful step-forward planning 
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New experiments should be predicted “from scratch”
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How well can a discharge be reproduced with minimum input?
• Fix ne, Te, Ti and vf at the separatrix
• Predict everything inside
• Set nC as a fraction of ne, read radiation from data

Obtain a good agreement with data

HOWEVER 

this is A FORTUITUOUS AGREEMENT
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Challenge: pedestal predictions limited by available models
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• Same height and width for Te,ped and Ti,ped

• Same width for Tped and nped

• nped is an input to pedestal calculations
• here assume nped = 2.0 nsep

Opportunities for improvement:
Semi-empirical model for nsep, nped, Te,ped, Ti,ped based on large 
experimental database and neural networks
[anybody interested, please come and talk to me] 



Looking into details: the rotation profile is over-predicted
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How well can a discharge be reproduced with minimum input?
• Fix ne, Te, Ti and vf at the separatrix
• Predict everything inside
• Set nC as a fraction of ne, read radiation from data
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Opportunities for improvement:
Can a reduced model for rotation help?
[see work by T. Stolfzuck-Duek and B. Grierson] 
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SN (1015 n/s)
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Measured
Predicted, with rotation
Rotation from data

How well can a discharge be reproduced with minimum input?
• Fix ne, Te, Ti at the separatrix
• Predict everything inside
• nC fraction of ne, read radiation from data
• Read rotation from data

Believe it or not …

The disagreement with the measured neutrons rate 
and with the measured impurity density increases when the 
rotation profile is taken from the experiment.

Plasmas are nonlinear systems => better predicting everything 
and then compare quantities one-to-one to identify problems, 
than constraining one quantity and let the code adjust the rest.
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Kick model brings down neutrons, but density is over-predicted
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SN (1015 n/s)
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nimp [1019 m-3]
from fix fraction
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How well can a discharge be reproduced with minimum input?
• Fix ne, Te, Ti at the separatrix
• Predict everything inside
• nC fraction of ne, read radiation from data
• Read rotation from data
• Apply kick model to NBI calculations

Opportunities for improvement:
Self-consistent modeling of NBI and fast ion transport 
needed inside TRANSP
[see work by M. Podesta’] 



My one cent lesson learnt

9/17/18 Francesca M. Poli 32

•We had a successful example of predict-first approach
• went to the control room with a simulated discharge
• achieved target using one single shot
• have been able to design EC trajectories during a failure and even generate a solution 
in-between shot => not ready yet for applications in the control room.

• Fairly good predictions can be done with some assumptions on the boundary conditions
• However, large uncertainties still remain:

• radiation is largely over-predicted => cannot use it in electron power balance
• impurity predictions have large uncertainties => cannot predict ne, nimp together
• we have used coil currents from the experiment => in reality we should use gaps
•more robust boundary conditions for ne, Te, Ti, vf at the separatrix needed



The things that nobody says … (our predictive models suck)
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This was a nice exercise, but it is not going to work when the NBI waveform is modified
Þ Because the beams fuel the plasma
Þ Because the beams affect rotation
• thermal transport models do not include effect of fast ions among sources
• fast ion transport due to AEs/MHD needs to be included self-consistently
• present models for momentum transport are inadequate
• pedestal models do not separate among channels, do not predict density
Þ semi-empirical models needed to guide theory development
• Boundary conditions at the separatrix are important => need reduced core-edge model
• with 2D neutral model
• self-consistent impurity transport with core+edge radiation
• Need more robust free-boundary equilibrium solver
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Reduced models are used to include 
EP transport by instabilities in TRANSP
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• A common framework has been developed and tested in FY18 to manage 
both kick and RBQ-1D models in TRANSP
– Models compute phase-space resolved “transport probability” p(DE,DPz |E,Pz,µ)

associated with each mode

– Probabilities are used in Monte Carlo NUBEAM module of TRANSP to compute fast ion 
evolution

TRANSP (main)

Reduced EP transport models

NUBEAM step k
NUBEAM (classical physics):

update sources, apply 
scattering, slowing down



Two approaches explored in FY18:
numerical vs theory-based (quasi-linear)
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• Models use mode structure, damping rate from MHD codes such as NOVA-K
• Difference: how is p(DE,DPz |E,Pz,µ) inferred?

– “Kick model”: compute p numerically using particle-following code ORBIT
• Retain possibility of sub/super diffusive or convective transport (non-gaussian p)
• Include kicks in both energy and canonical momentum; µ conserved

– “Resonance broadened Quasi-linear model” RBQ-1D: use improved quasi-linear
theory to compute p
• Diffusive approximation -> gaussian p(DPz); assume E and µ are conserved
• More computationally efficient than kick model approach

• Improve ad-hoc diffusive models previously available in TRANSP
– Physic based; enable both interpretive and predictive TRANSP simulations

• Mode saturation levels inferred by balancing drive vs. damping



Approach: proceed from interpretive to predictive
simulations, validate models
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Let’s first agree on the definitions…
• Interpretive simulations:

– Constrain simulations with available experimental data

– Validate main physics assumptions of the models

– Benchmark among models

– Validate models against additional experimental data

• Predictive simulations:
– Remove constraints

– Increase number of parameters to be determined (“predicted”) self-consistently by the models

– Assess predictive capability

– Identify missing physics



Metrics for success: use neutron rate as global metric,
available EP diagnostics data for more detailed validation
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• Historical approach for TRANSP simulations:
– Introduce “anomalous fast ion diffusivity” when instabilities are present

– Adjust diffusivity to match measured neutrons -> good!

• Will use the same approach for a first estimate of “success”
– Allows quick experiment/modeling comparison 

– OK to infer overall degradation in plasma performance

• Will turn to more detailed measurements for validation
– Compare modeling results to phase-space resolved EP data (FIDA, NPA)
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Te [keV] (integrated and normalized)
Predicted, with rotation
Rotation from data

Ti [keV] (integrated and normalized)
Predicted, with rotation
Rotation from data


