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Overview of selected topics in  
SOL turbulence and blob-filament research 
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Introduction & Motivation 

• Coherent structures in the form of blob-filaments (“blobs”) arise from 
edge/SOL turbulence: flux tubes filled with “extra” plasma. 

• Filaments extended along B can deliver heat and particles to the divertor 
target. 

• Blob-filaments propagate radially delivering heat and particles to the main 
chamber walls. 

• Understanding the structure and characteristics of this turbulence is 
important. It may impact 
– recycling (divertor and main chamber) 
– deleterious PMI interactions: sputtering and erosion 
– spreading of the near SOL heat flux channel 
– impurity transport 
– divertor operation and detachment 
– RF interactions: scattering of ECH, LH waves; density at antenna, e.g. for 

ICRF coupling 
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Blob-filament theory 
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• definition 
• basic propagation mechanism 

[Krasheninnikov, S. I. Phys. Lett. A 283, 
36 (2001)] 

• plasma circuit 

Review:  Krasheninnikov, D’Ippolito & Myra, J. Plasma Phys. 74, 679 (2008) 

Current tries to short out 
polarization charges: 
affects blob velocity. 



Blob velocity scaling 
• Flux depends on blob velocity, size, density/pressure, frequency 
• Important quantities determining vb include 

– blob amplitude δp/p 
– blob scale size δb 
– parallel electrical connection ⇔ resistivity and magnetic geometry L||  

• Simplest blob model: interchange driven, no parallel variation of blob 
pressure, sheath connected (negligible plasma resistivity and X-point 
effects) 
 

 
• Disconnected inertial limit (strong parallel resistivity and/or X-point 

effects) 
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… Blob velocity scalings 

• Balancing curvature-drift, sheath end-loss & ion polarization current 
defines characteristic values: 
 
 
 
 

• and dimensionless blob velocities and sizes 
 
 

• Dimensionless scaling 
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X-points and magnetic shear can disconnect filaments 

• Midplane circular flux tubes map to 
thin fans 
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Krasheninnikov, Ryutov &Yu, 
J. Plasma Fusion Res. 2004 

• Midplane-sheath disconnection 
– parallel resistivity impedes J||   (vb ↑) 

– fans enhance J⊥ ion polarization (vb ↓) 
• Ion FLR gyro-averaging of wave or 

blob E    [Ryutov & Cohen CPP 2004] 
 
 Myra, Russell, & D’Ippolito PoP 2006 
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Experimental comparisons 
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• Scaling of vb confirmed in basic 
laboratory experiments 

• Validation in tokamaks more 
challenging 

Zweben PPCF 2016 

NSTX 

with n 
with n0 

Theiler PRL 2009 

TORPEX 
sheath connected 

inertial 

Not understood in database: 
• Vrad distribution, amp. 

scaling. … 
• blob creation rate & size 
• Vpol dependence amp. 

 



… Experimental comparisons - NSTX 
• Disconnection and smaller Vb,rad predicted and observed near separatrix 
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GPI-Div cross correlation Scotti 2018 
Radial  
Poloidal 
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Baver 2018 -ArbiTER simulations 

low …               and high collisionality 

approaching separatrix 



… Experimental comparisons - TCV 
C.K. Tsui, et al., PoP 2018 
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• TCV RB (inertial) 
conditions, LSN 
discharge 

• comparisons with v scalings 
for a (= δ) 1.6 (red) and 3.3 
(blue) 
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For better validation and predictive capability: 

• Simultaneous measurements of 
– 2D blob size and velocity (e.g. GPI) 
– internal blob plasma parameters  ne, Te, (Ti) (e.g. probes) 
– parallel structure and X-point or divertor connection 

• Theoretical understanding (and numerical simulation) of 
– blob creation rate and location 
– background turbulence saturation level 
– blob size distribution 
– blob velocity distribution (blobs not isolated - interact) 
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Many other interesting papers on blob dynamics: 
 theoretical and experimental  
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• Thrysøe Blobs and neutrals PPCF 2016 
• Hacker Blob generation rate PoP 2018 
• Zhang & Krasheninnikov Blobs in framework of nonlinear drift waves PoP 2016 
• Walkden Isolated filament motion for MAST NF 2015 
• Stepanenkov Blobs in sheath-connected arbitrary topology PoP 2017 
• Angus Blobs in 3D PoP 2014 
• Zweben NSTX 2D correlations PoP 2017 
• Kube  Blob amplitude and size scalings PoP 2016 
• Allan Ion temperature of blobs in MAST PPCF 2016 
• Birkenmeier Filament transport warm ions in AUG NF 2015 
• Held Finite Ti blobs NF 2016 
• Carralero Blobs and SOL heat transport NF 2018 
• Avino X-pt effects on blobs PRL 2016 
• Russell C-Mod blobs and flows PoP 2016 
• Carralero  High density transition of blob filaments in ASDEX NF 2014 
• Fuchert  ASDEX L- and H-mode GPI blobs PPCF 2014 
• Kocan Intermittent SOL transport in ASDEX NF 2013 
• Wiesenberger  Unified blob-hole transport scaling laws PoP 2017 
• Simon Edge turbulent transport scaling PPCF 2014 
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Density shoulders in the SOL 
• Density shoulder: increase of λn in the far SOL at high ne 

– observed in many tokamaks; consistent with convective (not diffusive) transport 
• Impacts plasma (blob-filament) interaction with main chamber walls 
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• Interpreted on ASDEX-U as blob 
detachment due to divertor 
collisionality 

– vb scaling changes SL → inertial 
– increased blob speed and 

particle flux 
– size δb also observed to increase  

Carralero NF 2017 )nlog( e

ρ

Carralero PRL 2015: L-mode 

divΛ

nλ
(mm) 



… Density shoulders in the SOL 

• Alternative shoulder formation mechanisms: 
– ionization in main SOL [Lipschultz PPCF 2005 – C-Mod] 
– divertor neutral processes, e.g. recycling [Wynn NF 2018] 

• Broaden λn ~ L|| Γ⊥/ Γ|| ⇒ increase Γ⊥  or reduce Γ|| 
– CX friction may clog the flow [Militello PPCF 2016] 

• Recent JET  [Wynn NF 2018] , TCV [Vianello NF 2017]  and ASDEX-U 
[Carralero JNM 2017] experiments suggest that changes in Λdiv are not 
sufficient to give a shoulder. Also 
– H- and L- mode shoulders may be different 
– Divertor target configuration, fueling/seeding important 

• Whether or not larger Λdiv causes shoulders, it is still expected to affect 
blob-filament propagation and main chamber PMI interaction. 
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Positive feedback loop: upstream-to-divertor power flow 

“Thermal transport catastrophe and the tokamak edge density limit,” D. A. 
D'Ippolito and J. R. Myra, Phys. Plasmas 13, 062503 (2006). 
• Blob velocity and transport rate increases with divertor collisionality 
• 2 self-sustaining states: 

–  connected, slow moving blobs with warm X-pt 
–  disconnected, fast moving blobs with cold X-pt 

• May be related to ASDEX-U observation of SOL  
width broadening at detachment [Sun PPCF 2017] 
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• C-Mod N2 seeding [LaBombard PSI 2018]: no 
relationship between divertor conditions and 
upstream profiles 

– But all blob-filaments were electrically 
disconnected in these datasets by X-point 
shear 
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Blob statistical properties 
• Surface and atomic physics interactions are nonlinear – should not use 

mean profiles 
• Use statistical description for main chamber PMI and divertor studies 
• Garcia PRL 108 265001 (2012); PoP 23 052308 (2016) and others 
• Single point probe measurements of blob arrivals in far SOL described by  

– Poisson process (exponential distribution of waiting times between 
uncorrelated pulses) 

– prescribed “pulse” shape (the blob) 
– exponential distribution of amplitudes 

• PDFs characterized by intermittency parameter 
 
 
 

• “Pulse” shape, mean amplitude, γ ⇒ rms/mean, normalized time 
correlation function, fluctuation spectrum S(ω), skewness, kurtosis … 

• Quite successful in comparisons with C-Mod and TCV data [Garcia et al.] 
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Application: Ensemble-averaged profiles 
 

• If blobs:  
– non-interacting (e.g. γ << 1, far SOL)  
– velocity distribution known 
– blob shape and size distribution known 
– amplitude distribution and decay rate known (e.g. parallel losses) 
– waiting time (blob frequency) known 

 then ⇒ radial profile of ne, Γ, … in SOL 
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[D’Ippolito PoP 2002, Militello PoP 2008] 

Militello 2008 

e.g. for ux ~ 1/rb
2, Gaussian shape, constant amp, 

decay rate ~ µ, size dist. f(rb) 
 
D’Ippolito Myra, and Krasheninnikov 2002 
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Application: Blob-hole dynamics 

• Blob-hole creation model 
 
 

• Two-point spatial correlation functions 
• Vary the reference location (+) 
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GPI correlations 
Zweben PoP 2017 

Statistical model 
Myra PPCF 2018 

hole blob 

• However, GPI did not show inward “hole” motion in time-lag correlations 



Motion of holes 

• Inward motion expected theoretically 
– inward impurity transport 
– turbulence spreading into pedestal 

• Probes [e.g. Boedo PoP 2014] 
– Skewness S < 0 (~ inside separatrix) for holes 
– S > 0  (~ outside) for blobs 
– Inward/outward Vrad for holes/blobs 

 
• Recent GPI analysis (Zweben) 

– Negative S not seen 
– Inward motion of minima on average 
– Some individual minima/maxima have 

positive/negative Vrad 
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Near SOL, SOL width, turbulence 

• Midplane SOL width λq from 
 
 

 L|| = parallel scale length, or if SL entire field line 
• Parallel flux is “classical” (e.g. collisional, sheath  …) 

 
• Focus on turbulent heat (or particle, p → n) flux at the separatrix 

– QL theory 
 

• If pressure advection dominates 
 
 

• and e.g.  for interchange-type modes ω =  iγmhd giving a (near SOL) 
diffusive flux 
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Drift-interchange turbulence on NSTX 

• Instead of assuming interchange turbulence, define  νturb 
 
 
 

 and test relationship to drift and interchange frequencies 
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• Assuming drift-interchange + additional caveats ⇒ scaling for λq, turbulence 
– small but not negligible for NSTX 
– could dominate Eich and Goldston HD at large Ip and large R  

Myra, Russell, and Zweben, PoP 2016 



Relation of QL turbulent flux to blob flux 
• Turbulence Gaussian towards core →  intermittent in the far SOL 

– Skewness S increases into the SOL (many experiments) 
– Intermittency parameter γint = τd/τw decreases into the SOL 
– S = 2/γint

1/2 for Poisson statistics, exponential pulse amplitudes and exponential 
pulse shape [Garcia, 2016] 

• Consistent with notion that  
– Large amplitude fluctuations form outward propagating blobs 
– Blobs accelerate and hence separate into the SOL 
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[Zweben PPCF 2016] 
• Number of blobs/frame decreases into the SOL; in the same region the velocity 

increases 



Status 
• Need to understand physics and scaling of 

– pb the peak pressure in the blob, radial birth location 
– fp the packing fraction, or equivalently (assuming δb/vb is known) the blob 

frequency fb or waiting time 
− blob size distribution 

• know the most stable blob size for SOL propagation 
– blob generation rate: 

 
• Work on blob generation rate by [Fuchert PPCF 2016] 
• Drift wave dynamics and blob formation [Krasheninnikov PLA 2016]; [Zhang PoP 

2016] 
– relates blob amplitudes, sizes, separations and poloidal speeds 
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Neoclassical drift effects and turbulence 

• Ions cross the separatrix due to banana motion; and can be subsequently 
lost to the divertor 

• Electrons cross the separatrix due to turbulence; maintain ambipolarity 
– controls density SOL width 

• Ion orbit losses set up electrostatic potential Φ(θ) near separatrix 
– complex interaction between Φ(θ), Er shearing and turbulence 
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XGC1 simulation analysis (DIII-D) [Keramidas Charidakos PoP 2018] 

particle flux shearing rate 

turbulent 
E×B particle 

flux 

Poloidal angle 



… XGC1 analysis: filamentary structures in SOL 
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• 5 flux surfaces starting near the separatrix and moving out: 
Contours → {0.005, 0.01, 0.022, 0.05, 0.10}  to show blobs (not holes) 
 
 
 
 

 
toroidal  → 

separatrix  far SOL 

• High field side (HFS) is populated only near the separatrix 
– Blob-filaments propagate out only on low field side (LFS) 
– Consistent with turbulent flux at separatrix 

•  Turbulent near separatrix; fades in SOL 
• “Neoclassical” drifts dominate ion motion 

• Local quasi-neutrality ⇒ ion entrainment in electron filaments  
• Not axisymmetric 
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Myra, Russell … TTF 2018 



Divertor localized modes 

• Observed experimentally on 
NSTX-U, MAST, C-Mod 

• Understanding of anomalous 
divertor transport needed: are 
these modes important? 

• Modeling in progress 
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Baver 2018 

Scotti NF 2018 
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Ideas for future work (experiment and theory) 

• Basic blob physics 
– blob creation rate and location; packing fraction 
– turbulence saturation level; blob amplitude 
– blob size and velocity distributions 

• Hole dynamics and impurity transport 
• Drift orbits, turbulence and SOL width:  

– Coexistence and transitions 
– Scaling of near and far SOL turbulent/blob flux with Ip , R, … 

• Density shoulder formation and relation to disconnection, divertor regime 
• Divertor transport: effect of fluctuations, divertor modes … 
• Neutral and atomic physics 

– divertor; instabilities and interaction with filaments 
– fueling and edge profiles, sources for simulation 
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Extras 
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Regimes for Zweben PPCF 2016 blob database 

 L-mode SC near sep and disconnected in far SOL 
 H-mode SC near sep and marginally disconnected in far SOL 



Zweben PPCF 2016: theoretical challenges 

Vrad and Vpol scaling with amplitude and 
distance from separatrix 

 Velocity 
distribution (with 
negative Vrad) 



… QL turbulent flux to blob flux 

• For isolated blobs 
 
 

 with peak pressure pb, velocity vb, packing fraction fp ~ γ 
• QL flux is 
  
• For blobs identify            ,               and at the birth region fp ~ 1 
• Packing fraction (or intermittency parameter) is key 

 
 

 proportional to blob generation frequency 1/τw 
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