ITER Diagnostics Work at PPPL

Hutch Neilson U.S. ITER Diagnostics Team Lead *Princeton Plasma Physics Laboratory*

NSTX-U / MFE Science Meeting 15 October 2018

PPPL is responsible for all 7 U.S. ITER diagnostics

Plasma Density Profile Measurement by Microwave Reflectometry

- Reflection layers exist in the plasma depending on density and microwave frequency.
 - A given frequency corresponds to a value of density
- Sweep through a range of frequencies and measure the time delay (τ) of each frequency component → density profile
- Addresses measurement roles:
 - \succ edge n_e profile
 - H-mode and ELM transients
- System can also measure density fluctuations and poloidal rotation.

Antenna-plasma coupling has been analyzed for a range of conditions including fluctuations.

G.J. Kramer et al 2018 Nucl. Fusion **58** 126014 https://doi.org/10.1088/1741-4326/aadea1 Antenna-plasma coupling vs frequency (avg. and 1σ error bands over 300 simulations per frequency)

ITER@PPPL Update / NSTX-U&MFE Science Meeting 15 Oct. 2018 / H. Neilson

LFSR extends ~50m from first wall to diagnostic hall

ITER@PPPL Update / NSTX-U&MFE Science Meeting 15 Oct. 2018 / H. Neilson

In-vessel Equipment

- Stainless steel waveguide with periscope to prevent streaming.
- Support straps attach LFSR equipment to port plug structure.

First plasma scope!

Antenna Assembly

- 6-antenna array provides required measurement functions
- Reflected waves are received by the launching antenna (monostatic)
- Water-cooled antennas and support block receive the main nuclear heat loads.

Transmission line system has undergone extensive performance testing at General Atomics.

LFSR transmission-line prototype test stand

Bends

Beam Splitter / Combiners

Switches

Polarization Rotators

Josephered Contraction

Gaussian Telescope

- Maintains beam transmission while accommodating thermal displacements (up to 3 cm) of vessel-mounted waveguides.
- Performance successfully demonstrated in proof-of-concept test.

LFSR Project is Ready for a Preliminary Design Review

- Design team: PPPL, General Atomics, UCLA, Palomar Scientific Instruments.
- Preparations for Nov. 7-8 PDR are nearly complete.
 - >280 system requirements defined
 - Design compliance documentation (>100 reports and drawings) submitted and in final review.
 - U.S. ITER status review Sept. 11 affirmed readiness to proceed to PDR.

Backups

ITER@PPPL Update / NSTX-U&MFE Science Meeting 15 Oct. 2018 / H. Neilson

Required measurement roles: edge electron density (profiles and fluctuations), poloidal rotation

Measurement	Parameter	Contribution	Highest Operation Role	Range Value Coverage	Spatial Coverage	Time Res.	Spatial Res.
Edge electron density profile [1]	Edge n _e	Primary	Advanced Control	5x10 ¹⁸ – 1x10 ²⁰ m ⁻³	r/a > 0.85	10 ms	5 mm
Toroidal Alfvén Eigenmode (TAE) density fluctuations [2]	δn _e / n _e	Primary	Physics	5x10 ⁻⁶ – 5x10 ⁻⁴	TBD	30 kHz – 2 MHz	N = 10 - 50
H-mode, ELM and L-H mode transition indicator [3]	ELM / density transient	Primary	Physics	5x10 ¹⁸ – 1.5x10 ²⁰ m ⁻³	r/a > 0.85	0.5 ms	3 mm
Plasma rotation [4]	V _{pol}	Supplementary	Advanced Control	1 – 50 km/s	r/a > 0.85	10 ms	a/50 (~4 cm)
Line-averaged electron density [3]	∫n _e dl / ∫ dl	Supplementary	Basic Control	5x10 ¹⁸ – 1.5x10 ²⁰ m ⁻³	r/a > 0.85	10 ms	3 mm
Core electron density profile [1]	Core n _e	Backup	Advanced Control	5x10 ¹⁸ - 3x10 ²⁰ m ⁻³	r/a < 0.85	10 ms	a/30 (~7 cm)

Conditions:

[1] "Measurement 23 and 24, Electron Temperature and Density profiles," SBYVVL

[2] "SRD-55 (Diagnostics) from DOORS," 28B39L

[3] "Measurement 06 & 14 (line average density and ELMs) Parameter 011, 031," T8FVZ3

[4] "Measurement Requirements Flow-Down for MP018. Vpol," R25ZHM

- Full- and half-field
- 52 cm range of vertical plasma displacements

LFSR Integration in Port Plug

• Front end components will be installed in a first-plasma port (Equatorial 11) diagnostic shield module (DSM).

